--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-5hrs-v1 results: [] --- # w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-5hrs-v1 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6643 - Wer: 0.2469 - Cer: 0.0788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 1.8874 | 0.9949 | 98 | 0.6403 | 0.5429 | 0.1657 | | 0.4899 | 2.0 | 197 | 0.4921 | 0.3300 | 0.1001 | | 0.3892 | 2.9949 | 295 | 0.4608 | 0.3314 | 0.1019 | | 0.3259 | 4.0 | 394 | 0.4729 | 0.3080 | 0.0942 | | 0.2863 | 4.9949 | 492 | 0.4495 | 0.3156 | 0.0951 | | 0.2333 | 6.0 | 591 | 0.4269 | 0.2624 | 0.0808 | | 0.2059 | 6.9949 | 689 | 0.4365 | 0.2609 | 0.0839 | | 0.1722 | 8.0 | 788 | 0.4346 | 0.2552 | 0.0825 | | 0.1551 | 8.9949 | 886 | 0.4134 | 0.2468 | 0.0766 | | 0.1318 | 10.0 | 985 | 0.4794 | 0.2631 | 0.0811 | | 0.1189 | 10.9949 | 1083 | 0.5191 | 0.2530 | 0.0796 | | 0.1004 | 12.0 | 1182 | 0.5311 | 0.2689 | 0.0794 | | 0.0959 | 12.9949 | 1280 | 0.5502 | 0.2535 | 0.0778 | | 0.0831 | 14.0 | 1379 | 0.5060 | 0.2476 | 0.0757 | | 0.0679 | 14.9949 | 1477 | 0.5023 | 0.2517 | 0.0830 | | 0.0617 | 16.0 | 1576 | 0.5279 | 0.2403 | 0.0757 | | 0.0562 | 16.9949 | 1674 | 0.6012 | 0.2411 | 0.0761 | | 0.0496 | 18.0 | 1773 | 0.6263 | 0.2423 | 0.0755 | | 0.0442 | 18.9949 | 1871 | 0.5991 | 0.2581 | 0.0794 | | 0.0401 | 20.0 | 1970 | 0.6323 | 0.2412 | 0.0762 | | 0.0329 | 20.9949 | 2068 | 0.6417 | 0.2326 | 0.0735 | | 0.0266 | 22.0 | 2167 | 0.6279 | 0.2381 | 0.0756 | | 0.0255 | 22.9949 | 2265 | 0.5834 | 0.2470 | 0.0772 | | 0.0214 | 24.0 | 2364 | 0.6781 | 0.2364 | 0.0735 | | 0.0217 | 24.9949 | 2462 | 0.6253 | 0.2398 | 0.0752 | | 0.0163 | 26.0 | 2561 | 0.6940 | 0.2427 | 0.0813 | | 0.0363 | 26.9949 | 2659 | 0.6632 | 0.2363 | 0.0756 | | 0.0182 | 28.0 | 2758 | 0.6094 | 0.2363 | 0.0766 | | 0.014 | 28.9949 | 2856 | 0.6928 | 0.2438 | 0.0770 | | 0.0157 | 30.0 | 2955 | 0.6863 | 0.2422 | 0.0768 | | 0.0121 | 30.9949 | 3053 | 0.6643 | 0.2469 | 0.0788 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.1.0+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3