--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: w2v-bert-2.0-lg-CV-Fleurs-filtered-100hrs-v11 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: lg_ug split: test args: lg_ug metrics: - name: Wer type: wer value: 0.42011661807580175 --- # w2v-bert-2.0-lg-CV-Fleurs-filtered-100hrs-v11 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.4163 - Wer: 0.4201 - Cer: 0.0816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 0.8755 | 1.0 | 7125 | 0.3901 | 0.4546 | 0.0912 | | 0.1904 | 2.0 | 14250 | 0.3507 | 0.4646 | 0.0896 | | 0.1641 | 3.0 | 21375 | 0.3312 | 0.4389 | 0.0854 | | 0.1511 | 4.0 | 28500 | 0.3229 | 0.4311 | 0.0802 | | 0.145 | 5.0 | 35625 | 0.3518 | 0.4273 | 0.0820 | | 0.1406 | 6.0 | 42750 | 0.3275 | 0.4302 | 0.0812 | | 0.1379 | 7.0 | 49875 | 0.3627 | 0.5317 | 0.0944 | | 0.1316 | 8.0 | 57000 | 0.3234 | 0.4175 | 0.0817 | | 0.1182 | 9.0 | 64125 | 0.3534 | 0.4317 | 0.0819 | | 0.1082 | 10.0 | 71250 | 0.3230 | 0.4053 | 0.0777 | | 0.0976 | 11.0 | 78375 | 0.3261 | 0.4194 | 0.0791 | | 0.0884 | 12.0 | 85500 | 0.3183 | 0.4119 | 0.0798 | | 0.0803 | 13.0 | 92625 | 0.3695 | 0.4170 | 0.0791 | | 0.072 | 14.0 | 99750 | 0.3596 | 0.4102 | 0.0799 | | 0.0637 | 15.0 | 106875 | 0.3625 | 0.4137 | 0.0803 | | 0.0554 | 16.0 | 114000 | 0.3958 | 0.4336 | 0.0822 | | 0.0481 | 17.0 | 121125 | 0.3820 | 0.4128 | 0.0796 | | 0.0422 | 18.0 | 128250 | 0.4239 | 0.4134 | 0.0807 | | 0.0357 | 19.0 | 135375 | 0.3978 | 0.4436 | 0.0839 | | 0.031 | 20.0 | 142500 | 0.4163 | 0.4201 | 0.0816 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.1.0+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3