--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - fleurs model-index: - name: w2v2-bert-Wolof-5-hours-Google-Fleurs-dataset results: [] --- # w2v2-bert-Wolof-5-hours-Google-Fleurs-dataset This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the fleurs dataset. It achieves the following results on the evaluation set: - eval_loss: 1.4897 - eval_wer: 0.4518 - eval_cer: 0.1503 - eval_runtime: 47.5107 - eval_samples_per_second: 7.809 - eval_steps_per_second: 0.989 - epoch: 39.02 - step: 1600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.2