--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-300m-Fleurs_AMMI_AFRIVOICE_LRSC-ln-50hrs-v2 results: [] --- # wav2vec2-xls-r-300m-Fleurs_AMMI_AFRIVOICE_LRSC-ln-50hrs-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3618 - Wer: 0.1994 - Cer: 0.0632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 4.4765 | 1.0 | 2847 | 2.7985 | 1.0 | 1.0 | | 1.8884 | 2.0 | 5694 | 0.7557 | 0.5439 | 0.1510 | | 0.9348 | 3.0 | 8541 | 0.5497 | 0.3536 | 0.1072 | | 0.7562 | 4.0 | 11388 | 0.4460 | 0.3048 | 0.0929 | | 0.6678 | 5.0 | 14235 | 0.4077 | 0.2995 | 0.0907 | | 0.6169 | 6.0 | 17082 | 0.3893 | 0.2918 | 0.0880 | | 0.58 | 7.0 | 19929 | 0.3855 | 0.2834 | 0.0861 | | 0.5497 | 8.0 | 22776 | 0.3514 | 0.2613 | 0.0806 | | 0.525 | 9.0 | 25623 | 0.3421 | 0.2539 | 0.0795 | | 0.5049 | 10.0 | 28470 | 0.3359 | 0.2540 | 0.0786 | | 0.4862 | 11.0 | 31317 | 0.3337 | 0.2534 | 0.0783 | | 0.4715 | 12.0 | 34164 | 0.3294 | 0.2362 | 0.0743 | | 0.4569 | 13.0 | 37011 | 0.3087 | 0.2406 | 0.0731 | | 0.4463 | 14.0 | 39858 | 0.3288 | 0.2265 | 0.0712 | | 0.4329 | 15.0 | 42705 | 0.3379 | 0.2310 | 0.0724 | | 0.4245 | 16.0 | 45552 | 0.3287 | 0.2229 | 0.0700 | | 0.4092 | 17.0 | 48399 | 0.3202 | 0.2169 | 0.0684 | | 0.4016 | 18.0 | 51246 | 0.3114 | 0.2153 | 0.0682 | | 0.3903 | 19.0 | 54093 | 0.3204 | 0.2128 | 0.0671 | | 0.3831 | 20.0 | 56940 | 0.3112 | 0.2122 | 0.0670 | | 0.3728 | 21.0 | 59787 | 0.3169 | 0.2112 | 0.0667 | | 0.3681 | 22.0 | 62634 | 0.3080 | 0.2089 | 0.0662 | | 0.3606 | 23.0 | 65481 | 0.3238 | 0.2097 | 0.0668 | | 0.3535 | 24.0 | 68328 | 0.3144 | 0.2084 | 0.0658 | | 0.3432 | 25.0 | 71175 | 0.3192 | 0.2055 | 0.0655 | | 0.339 | 26.0 | 74022 | 0.3123 | 0.2070 | 0.0661 | | 0.3349 | 27.0 | 76869 | 0.3244 | 0.2043 | 0.0651 | | 0.3217 | 28.0 | 79716 | 0.3109 | 0.2082 | 0.0676 | | 0.313 | 29.0 | 82563 | 0.3263 | 0.2066 | 0.0655 | | 0.3079 | 30.0 | 85410 | 0.3456 | 0.1997 | 0.0640 | | 0.3024 | 31.0 | 88257 | 0.3035 | 0.2087 | 0.0672 | | 0.2966 | 32.0 | 91104 | 0.3459 | 0.1969 | 0.0634 | | 0.289 | 33.0 | 93951 | 0.3178 | 0.2005 | 0.0646 | | 0.2828 | 34.0 | 96798 | 0.3217 | 0.2040 | 0.0657 | | 0.2794 | 35.0 | 99645 | 0.3214 | 0.2085 | 0.0671 | | 0.2746 | 36.0 | 102492 | 0.3556 | 0.1988 | 0.0633 | | 0.2701 | 37.0 | 105339 | 0.3509 | 0.1984 | 0.0638 | | 0.2663 | 38.0 | 108186 | 0.3671 | 0.2004 | 0.0640 | | 0.2663 | 39.0 | 111033 | 0.3396 | 0.1980 | 0.0637 | | 0.2572 | 40.0 | 113880 | 0.3707 | 0.2008 | 0.0643 | | 0.2545 | 41.0 | 116727 | 0.3527 | 0.1970 | 0.0628 | | 0.2526 | 42.0 | 119574 | 0.3618 | 0.1994 | 0.0632 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.1.0+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1