File size: 4,176 Bytes
c0c1054
 
e483c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c1054
 
e483c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-lg-CV-Fleurs_filtered-100hrs-v12
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: fleurs
      type: fleurs
      config: lg_ug
      split: None
      args: lg_ug
    metrics:
    - name: Wer
      type: wer
      value: 0.45568513119533527
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-300m-lg-CV-Fleurs_filtered-100hrs-v12

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5693
- Wer: 0.4557
- Cer: 0.0926

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 70
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|
| 0.8586        | 1.0   | 7125   | 0.4810          | 0.5615 | 0.1256 |
| 0.423         | 2.0   | 14250  | 0.4661          | 0.5633 | 0.1450 |
| 0.3588        | 3.0   | 21375  | 0.4151          | 0.5    | 0.1075 |
| 0.32          | 4.0   | 28500  | 0.3937          | 0.4999 | 0.1084 |
| 0.291         | 5.0   | 35625  | 0.3880          | 0.4866 | 0.1026 |
| 0.2685        | 6.0   | 42750  | 0.3779          | 0.4860 | 0.1035 |
| 0.2498        | 7.0   | 49875  | 0.3598          | 0.4660 | 0.0973 |
| 0.2347        | 8.0   | 57000  | 0.3553          | 0.4573 | 0.0936 |
| 0.2198        | 9.0   | 64125  | 0.3584          | 0.4630 | 0.0950 |
| 0.2072        | 10.0  | 71250  | 0.3571          | 0.4742 | 0.0983 |
| 0.1954        | 11.0  | 78375  | 0.3596          | 0.4580 | 0.0955 |
| 0.1861        | 12.0  | 85500  | 0.3626          | 0.4573 | 0.0952 |
| 0.1746        | 13.0  | 92625  | 0.3656          | 0.4972 | 0.1014 |
| 0.1656        | 14.0  | 99750  | 0.3712          | 0.4566 | 0.0918 |
| 0.1572        | 15.0  | 106875 | 0.3874          | 0.4569 | 0.0933 |
| 0.149         | 16.0  | 114000 | 0.3919          | 0.4809 | 0.0966 |
| 0.142         | 17.0  | 121125 | 0.3837          | 0.4424 | 0.0907 |
| 0.1332        | 18.0  | 128250 | 0.3843          | 0.4635 | 0.0941 |
| 0.1271        | 19.0  | 135375 | 0.4080          | 0.4560 | 0.0942 |
| 0.1203        | 20.0  | 142500 | 0.4209          | 0.4673 | 0.0929 |
| 0.1136        | 21.0  | 149625 | 0.4188          | 0.4632 | 0.0934 |
| 0.1084        | 22.0  | 156750 | 0.4369          | 0.4588 | 0.0930 |
| 0.1029        | 23.0  | 163875 | 0.4553          | 0.4735 | 0.0944 |
| 0.0993        | 24.0  | 171000 | 0.4547          | 0.4654 | 0.0941 |
| 0.0943        | 25.0  | 178125 | 0.4775          | 0.4561 | 0.0925 |
| 0.0902        | 26.0  | 185250 | 0.5074          | 0.4649 | 0.0935 |
| 0.0867        | 27.0  | 192375 | 0.5073          | 0.4509 | 0.0912 |
| 0.0833        | 28.0  | 199500 | 0.5150          | 0.4749 | 0.0953 |
| 0.0799        | 29.0  | 206625 | 0.5624          | 0.4725 | 0.0944 |
| 0.0771        | 30.0  | 213750 | 0.5769          | 0.4552 | 0.0918 |
| 0.0739        | 31.0  | 220875 | 0.5697          | 0.4533 | 0.0917 |
| 0.0704        | 32.0  | 228000 | 0.5693          | 0.4557 | 0.0926 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3