File size: 4,176 Bytes
c0c1054 e483c08 c0c1054 e483c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-lg-CV-Fleurs_filtered-100hrs-v12
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: lg_ug
split: None
args: lg_ug
metrics:
- name: Wer
type: wer
value: 0.45568513119533527
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-lg-CV-Fleurs_filtered-100hrs-v12
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5693
- Wer: 0.4557
- Cer: 0.0926
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 70
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|
| 0.8586 | 1.0 | 7125 | 0.4810 | 0.5615 | 0.1256 |
| 0.423 | 2.0 | 14250 | 0.4661 | 0.5633 | 0.1450 |
| 0.3588 | 3.0 | 21375 | 0.4151 | 0.5 | 0.1075 |
| 0.32 | 4.0 | 28500 | 0.3937 | 0.4999 | 0.1084 |
| 0.291 | 5.0 | 35625 | 0.3880 | 0.4866 | 0.1026 |
| 0.2685 | 6.0 | 42750 | 0.3779 | 0.4860 | 0.1035 |
| 0.2498 | 7.0 | 49875 | 0.3598 | 0.4660 | 0.0973 |
| 0.2347 | 8.0 | 57000 | 0.3553 | 0.4573 | 0.0936 |
| 0.2198 | 9.0 | 64125 | 0.3584 | 0.4630 | 0.0950 |
| 0.2072 | 10.0 | 71250 | 0.3571 | 0.4742 | 0.0983 |
| 0.1954 | 11.0 | 78375 | 0.3596 | 0.4580 | 0.0955 |
| 0.1861 | 12.0 | 85500 | 0.3626 | 0.4573 | 0.0952 |
| 0.1746 | 13.0 | 92625 | 0.3656 | 0.4972 | 0.1014 |
| 0.1656 | 14.0 | 99750 | 0.3712 | 0.4566 | 0.0918 |
| 0.1572 | 15.0 | 106875 | 0.3874 | 0.4569 | 0.0933 |
| 0.149 | 16.0 | 114000 | 0.3919 | 0.4809 | 0.0966 |
| 0.142 | 17.0 | 121125 | 0.3837 | 0.4424 | 0.0907 |
| 0.1332 | 18.0 | 128250 | 0.3843 | 0.4635 | 0.0941 |
| 0.1271 | 19.0 | 135375 | 0.4080 | 0.4560 | 0.0942 |
| 0.1203 | 20.0 | 142500 | 0.4209 | 0.4673 | 0.0929 |
| 0.1136 | 21.0 | 149625 | 0.4188 | 0.4632 | 0.0934 |
| 0.1084 | 22.0 | 156750 | 0.4369 | 0.4588 | 0.0930 |
| 0.1029 | 23.0 | 163875 | 0.4553 | 0.4735 | 0.0944 |
| 0.0993 | 24.0 | 171000 | 0.4547 | 0.4654 | 0.0941 |
| 0.0943 | 25.0 | 178125 | 0.4775 | 0.4561 | 0.0925 |
| 0.0902 | 26.0 | 185250 | 0.5074 | 0.4649 | 0.0935 |
| 0.0867 | 27.0 | 192375 | 0.5073 | 0.4509 | 0.0912 |
| 0.0833 | 28.0 | 199500 | 0.5150 | 0.4749 | 0.0953 |
| 0.0799 | 29.0 | 206625 | 0.5624 | 0.4725 | 0.0944 |
| 0.0771 | 30.0 | 213750 | 0.5769 | 0.4552 | 0.0918 |
| 0.0739 | 31.0 | 220875 | 0.5697 | 0.4533 | 0.0917 |
| 0.0704 | 32.0 | 228000 | 0.5693 | 0.4557 | 0.0926 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3
|