File size: 3,537 Bytes
6575176
 
2d7580a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6575176
 
2d7580a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-lg-CV-Fleurs_filtered-100hrs-v13
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: fleurs
      type: fleurs
      config: lg_ug
      split: None
      args: lg_ug
    metrics:
    - name: Wer
      type: wer
      value: 0.44538386783284745
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-300m-lg-CV-Fleurs_filtered-100hrs-v13

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4759
- Wer: 0.4454
- Cer: 0.0854

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 70
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|
| 0.7277        | 1.0   | 7125   | 0.4018          | 0.4833 | 0.1016 |
| 0.3225        | 2.0   | 14250  | 0.3800          | 0.4945 | 0.1067 |
| 0.2726        | 3.0   | 21375  | 0.3745          | 0.4588 | 0.0919 |
| 0.2416        | 4.0   | 28500  | 0.3439          | 0.4419 | 0.0885 |
| 0.2188        | 5.0   | 35625  | 0.3353          | 0.4657 | 0.0906 |
| 0.2024        | 6.0   | 42750  | 0.3289          | 0.4563 | 0.0881 |
| 0.1888        | 7.0   | 49875  | 0.3272          | 0.4451 | 0.0863 |
| 0.1767        | 8.0   | 57000  | 0.3267          | 0.4226 | 0.0830 |
| 0.1668        | 9.0   | 64125  | 0.3354          | 0.4305 | 0.0837 |
| 0.1568        | 10.0  | 71250  | 0.3277          | 0.4297 | 0.0857 |
| 0.1483        | 11.0  | 78375  | 0.3310          | 0.4425 | 0.0857 |
| 0.1398        | 12.0  | 85500  | 0.3433          | 0.4299 | 0.0836 |
| 0.1323        | 13.0  | 92625  | 0.3448          | 0.4472 | 0.0870 |
| 0.125         | 14.0  | 99750  | 0.3585          | 0.4388 | 0.0849 |
| 0.1174        | 15.0  | 106875 | 0.3623          | 0.4250 | 0.0828 |
| 0.1121        | 16.0  | 114000 | 0.3813          | 0.4333 | 0.0843 |
| 0.1059        | 17.0  | 121125 | 0.3788          | 0.4251 | 0.0825 |
| 0.0996        | 18.0  | 128250 | 0.3882          | 0.4434 | 0.0863 |
| 0.0944        | 19.0  | 135375 | 0.4082          | 0.4444 | 0.0860 |
| 0.0889        | 20.0  | 142500 | 0.4227          | 0.4446 | 0.0848 |
| 0.0846        | 21.0  | 149625 | 0.4323          | 0.4422 | 0.0852 |
| 0.081         | 22.0  | 156750 | 0.4540          | 0.4506 | 0.0881 |
| 0.0767        | 23.0  | 163875 | 0.4759          | 0.4454 | 0.0854 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3