--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-CV_Fleurs_AMMI_ALFFA-sw-200hrs-v1 results: [] --- # whisper-small-CV_Fleurs_AMMI_ALFFA-sw-200hrs-v1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4605 - Wer: 0.1870 - Cer: 0.0746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 1.3655 | 1.0 | 8064 | 0.4347 | 0.3461 | 0.1533 | | 0.4274 | 2.0 | 16128 | 0.3388 | 0.1987 | 0.0715 | | 0.2724 | 3.0 | 24192 | 0.3215 | 0.1789 | 0.0658 | | 0.1953 | 4.0 | 32256 | 0.3383 | 0.1737 | 0.0632 | | 0.1563 | 5.0 | 40320 | 0.3501 | 0.1856 | 0.0728 | | 0.1368 | 6.0 | 48384 | 0.3699 | 0.1954 | 0.0870 | | 0.127 | 7.0 | 56448 | 0.3858 | 0.1844 | 0.0711 | | 0.1236 | 8.0 | 64512 | 0.4001 | 0.1905 | 0.0786 | | 0.1216 | 9.0 | 72576 | 0.4121 | 0.1982 | 0.0809 | | 0.1204 | 10.0 | 80640 | 0.4407 | 0.2144 | 0.0916 | | 0.1123 | 11.0 | 88704 | 0.4334 | 0.1946 | 0.0798 | | 0.0949 | 12.0 | 96768 | 0.4478 | 0.1869 | 0.0754 | | 0.0808 | 13.0 | 104832 | 0.4396 | 0.1862 | 0.0762 | | 0.0702 | 14.0 | 112896 | 0.4605 | 0.1870 | 0.0746 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.1.0+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1