--- library_name: transformers language: - bem license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - BIG-C/BEMBA metrics: - wer model-index: - name: Whisper Small Bemba - Beijuka Bruno results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: BEMBA type: BIG-C/BEMBA args: 'config: bemba, split: test' metrics: - name: Wer type: wer value: 0.3491317596093836 --- # Whisper Small Bemba - Beijuka Bruno This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the BEMBA dataset. It achieves the following results on the evaluation set: - Loss: 0.4520 - Wer: 0.3491 - Cer: 0.0971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.025 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.9127 | 1.0 | 5143 | 0.5881 | 0.4483 | 0.1252 | | 0.5091 | 2.0 | 10286 | 0.4981 | 0.3918 | 0.1136 | | 0.4171 | 3.0 | 15429 | 0.4668 | 0.3636 | 0.1024 | | 0.3332 | 4.0 | 20572 | 0.4638 | 0.3551 | 0.1022 | | 0.251 | 5.0 | 25715 | 0.4828 | 0.3585 | 0.1101 | | 0.1689 | 6.0 | 30858 | 0.5249 | 0.3631 | 0.1102 | | 0.0992 | 7.0 | 36001 | 0.5907 | 0.3645 | 0.1078 | | 0.0548 | 8.0 | 41144 | 0.6471 | 0.3676 | 0.1082 | | 0.034 | 9.0 | 46287 | 0.7023 | 0.3646 | 0.1071 | | 0.0252 | 10.0 | 51430 | 0.7307 | 0.3707 | 0.1129 | | 0.0207 | 11.0 | 56573 | 0.7652 | 0.3652 | 0.1071 | | 0.0178 | 12.0 | 61716 | 0.7873 | 0.3653 | 0.1088 | | 0.0161 | 13.0 | 66859 | 0.8036 | 0.3643 | 0.1093 | | 0.0144 | 14.0 | 72002 | 0.8223 | 0.3573 | 0.1064 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.2.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1