assamim commited on
Commit
1fbd29d
1 Parent(s): 025d269

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -14
README.md CHANGED
@@ -1,33 +1,78 @@
1
  ---
2
- license: apache-2.0
3
  tags:
4
- - generated_from_keras_callback
5
- model-index:
6
- - name: assamim/mt5-small-indonesian-sum
7
- results: []
 
 
 
 
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
11
  probably proofread and complete it, then remove this comment. -->
12
 
13
- # assamim/mt5-small-indonesian-sum
14
 
15
  This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an [csebuetnlp/xlsum](https://huggingface.co/datasets/csebuetnlp/xlsum) dataset.
16
 
17
- ### Training hyperparameters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
- The following hyperparameters were used during training:
20
- - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
21
  - training_precision: float32
22
 
23
- ### Training results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
- | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
26
- |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
27
- | 4.6665 | 2.6526 | 19.7876 | 6.6344 | 16.7880 | 16.8459 | 18.92 | 0 |
 
 
 
 
 
 
 
 
 
 
 
28
 
 
 
 
29
 
30
- ### Framework versions
31
 
32
  - Transformers 4.19.2
33
  - TensorFlow 2.8.0
 
1
  ---
 
2
  tags:
3
+ - Summarization
4
+ - mT5
5
+ datasets:
6
+ - csebuetnlp/xlsum
7
+ language:
8
+ - id
9
+ license:
10
+ - apache-2.0
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
14
  probably proofread and complete it, then remove this comment. -->
15
 
16
+ # mt5-small-indonesian-sum
17
 
18
  This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an [csebuetnlp/xlsum](https://huggingface.co/datasets/csebuetnlp/xlsum) dataset.
19
 
20
+ ## Training results
21
+
22
+ | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len |
23
+ |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|
24
+ | 4.6665 | 2.6526 | 19.7876 | 6.6344 | 16.7880 | 16.8459 | 18.92 |
25
+
26
+ ## Training hyperparameters
27
+
28
+ Optimizer | VALUE
29
+ ---------|----------------------------
30
+ learning_rate| 2e-05
31
+ decay| 0.0
32
+ beta_1| 0.9
33
+ beta_2| 0.999
34
+ epsilon| 1e-07
35
+ amsgrad| False
36
+ weight_decay_rate| 0.01
37
 
 
 
38
  - training_precision: float32
39
 
40
+ ## Using this model in `transformers` (tested on 4.11.0.dev0)
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
44
+ import re
45
+
46
+ news = """
47
+ Anggota Unit Perlindungan Rakyat Kurdi di kota Rabia, pada perbatasan Irak-Suriah. Pasukan Kurdi Irak dilaporkan sudah menguasai kembali kota Rabia meskipun banyak korban jatuh. Pejabat senior Kurdi Irak mengatakan pasukan Kurdi Peshmerga mencatat kemajuan lewat serangan dini hari di Rabia. Sementara itu, milisi ISIS berusaha memukul mundur pasukan Kurdi Suriah di bagian lain perbatasan. Hal ini terjadi saat koalisi pimpinan Amerika terus melanjutkan serangan udara terhadap sasaran ISIS di Suriah dan Irak. Hari Selasa (30 September) dilaporkan juga terjadi serangkaian serangan bom di ibu kota Irak, Baghdad dan kota suci Syiah, Karbala. Dalam perkembangan terpisah, sejumlah tank Turki berada di bukit di sepanjang perbatasan dekat kota Kobane, Suriah setelah sejumlah bom mengenai wilayah Turki saat terjadi bentrokan dengan milisi ISIS dan pejuang Kurdi. Pemerintah Turki diperkirakan akan menyampaikan mosi ke parlemen, agar menyetujui aksi militer terhadap ISIS di Irak dan Suriah.
48
+ """
49
+
50
+ tokenizer = AutoTokenizer.from_pretrained("assamim/mt5-small-indonesian-sum")
51
+ model = AutoModelForSeq2SeqLM.from_pretrained("assamim/mt5-small-indonesian-sum", from_tf=True)
52
+
53
+
54
+ WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
55
 
56
+ input_ids = tokenizer.encode(WHITESPACE_HANDLER(news1), return_tensors='pt')
57
+ summary_ids = model.generate(input_ids,
58
+ min_length=20,
59
+ max_length=200,
60
+ num_beams=7,
61
+ repetition_penalty=2.5,
62
+ length_penalty=1.0,
63
+ early_stopping=True,
64
+ no_repeat_ngram_size=2,
65
+ use_cache=True,
66
+ do_sample = True,
67
+ temperature = 0.8,
68
+ top_k = 50,
69
+ top_p = 0.95)
70
 
71
+ summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
72
+ print(summary_text)
73
+ ```
74
 
75
+ ## Framework versions
76
 
77
  - Transformers 4.19.2
78
  - TensorFlow 2.8.0