astein0 commited on
Commit
d6a646c
1 Parent(s): b7fd9cf

uploading my lunarlander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.60 +/- 16.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe1777f20d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1777f2160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe1777f21f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1777f2280>", "_build": "<function ActorCriticPolicy._build at 0x7fe1777f2310>", "forward": "<function ActorCriticPolicy.forward at 0x7fe1777f23a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe1777f2430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe1777f24c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe1777f2550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe1777f25e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe1777f2670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe1777ee4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673321322115130380, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrmr7zh6IC6Mrc+O8YcoTbUC9E6dcReugAAgD8AAIA/mjFgPFyjZbqYPlq5mjXGtDVF4jkrBXw4AACAPwAAgD9mRnA6ZtKUP4LNkTyDrqm+y/MtvHhxVr0AAAAAAAAAAM3r6ryu55i6+tc5vUv2yDXYphe7njA1tQAAgD8AAAAAZj9QPSnYTbqmmA46rjcFNcVvSbpWGyi5AACAPwAAgD+zFn89eyyDumo7djvhsPE2Jl4gO36Ej7oAAIA/AACAP5ov5TzDITU//NytPbUJgr6SqM48WgunvQAAAAAAAAAAphTjvT3Kd7nmeII6HlrptRdYCjtmTJq5AACAPwAAAABmSKG8jwYxusBW5Dqxf4A1ujF6ugpUB7oAAIA/AACAP5CMgz7jP64/OPuSPo/XN757cH0+a2wuvQAAAAAAAAAAmubhPI9GbLo9hZI7d7+/s3YvTrsp/6m6AACAPwAAgD8zXe08j14PumD2ZTqRKFo1lMZgOUNdibkAAIA/AACAP81PWL1SaK65AWimuzPTtjRaWnq7HbXAOgAAgD8AAIA/M8yQPFyzTLrQsW28ReC5tR5qsrs4Pik1AACAPwAAgD8ze8k84UiTupglmryvFZq1s3LuOUhgCzUAAIA/AACAP+bsAr3hUOK6pfY5vIrPlTxTQ407O6CBvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIt+171N/qZECUhpRSlIwBbJRN6AOMAXSUR0CWW/WQfZEldX2UKGgGaAloD0MIO8jrwaQWXkCUhpRSlGgVTegDaBZHQJZe/3Hq/ud1fZQoaAZoCWgPQwh2G9R+6zBiQJSGlFKUaBVN6ANoFkdAlmOnWSU1RHV9lChoBmgJaA9DCEZEMXkD/BfAlIaUUpRoFU0UAWgWR0CWZFHE/B3zdX2UKGgGaAloD0MIAIxn0FA9YECUhpRSlGgVTegDaBZHQJZniv4dp7F1fZQoaAZoCWgPQwjek4eF2p1kQJSGlFKUaBVN6ANoFkdAlmphLkCFK3V9lChoBmgJaA9DCJeQD3q2BWZAlIaUUpRoFU3oA2gWR0CWax2Kl54XdX2UKGgGaAloD0MIweEFESkhZECUhpRSlGgVTegDaBZHQJZwjkyULUl1fZQoaAZoCWgPQwiL+49MB6hkQJSGlFKUaBVN6ANoFkdAlnP71EmY0HV9lChoBmgJaA9DCG3Jqgg312NAlIaUUpRoFU3oA2gWR0CWenU8V58jdX2UKGgGaAloD0MIkuo7v6iLZUCUhpRSlGgVTegDaBZHQJZ8s/Z/Tb51fZQoaAZoCWgPQwiy8stgjNlTQJSGlFKUaBVL1GgWR0CWfg9LHuJDdX2UKGgGaAloD0MIBVCMLJkTY0CUhpRSlGgVTegDaBZHQJafAiX6ZYx1fZQoaAZoCWgPQwggDDz3HmNnQJSGlFKUaBVN6ANoFkdAlqA6q4pc5nV9lChoBmgJaA9DCLCsNCmFImFAlIaUUpRoFU3oA2gWR0CWowffoA4odX2UKGgGaAloD0MIcR+5NemnYkCUhpRSlGgVTegDaBZHQJajt0Qsf7t1fZQoaAZoCWgPQwh23VuRmA1yQJSGlFKUaBVNcwJoFkdAlqZQ7tAs1HV9lChoBmgJaA9DCOYjKelhtF5AlIaUUpRoFU3oA2gWR0CWp9Vt4zJqdX2UKGgGaAloD0MIK27cYn7WX0CUhpRSlGgVTegDaBZHQJatTiiqQzV1fZQoaAZoCWgPQwj51/LK9T9kQJSGlFKUaBVN6ANoFkdAlrAzsdDIBHV9lChoBmgJaA9DCBwHXi33FGNAlIaUUpRoFU3oA2gWR0CWtN3jMmngdX2UKGgGaAloD0MIc2Tll8E3Y0CUhpRSlGgVTegDaBZHQJa1ja37UG51fZQoaAZoCWgPQwhUyQBQRUVkQJSGlFKUaBVN6ANoFkdAlrje7Dl5nnV9lChoBmgJaA9DCOP/jqjQRmVAlIaUUpRoFU3oA2gWR0CWu9Jm/WUbdX2UKGgGaAloD0MILJ/leXCXOkCUhpRSlGgVS5VoFkdAlsWgDNhVl3V9lChoBmgJaA9DCAcpeAq5RWVAlIaUUpRoFU3oA2gWR0CWxktHQQcxdX2UKGgGaAloD0MI3sfRHFm5Z0CUhpRSlGgVTegDaBZHQJbNoaCL/CJ1fZQoaAZoCWgPQwhKuJBH8PRlQJSGlFKUaBVN6ANoFkdAltAgWWQfZHV9lChoBmgJaA9DCGYQH9jx9WJAlIaUUpRoFU3oA2gWR0CW0YEMb3oLdX2UKGgGaAloD0MILLzLRfxeYUCUhpRSlGgVTegDaBZHQJbfw0ZWJad1fZQoaAZoCWgPQwilTdU9sullQJSGlFKUaBVN6ANoFkdAluEuDe0ojXV9lChoBmgJaA9DCHpVZ7XASl5AlIaUUpRoFU3oA2gWR0CW98BEroW6dX2UKGgGaAloD0MIFCS2u4dQZECUhpRSlGgVTegDaBZHQJb48sOG0u11fZQoaAZoCWgPQwgCt+7mKXplQJSGlFKUaBVN6ANoFkdAlv43tWuHOHV9lChoBmgJaA9DCBVYAFMG1WBAlIaUUpRoFU3oA2gWR0CXAOCO3lS1dX2UKGgGaAloD0MIqd2vAnwtZECUhpRSlGgVTegDaBZHQJcJ7r3TNMZ1fZQoaAZoCWgPQwgKZ7eWSYViQJSGlFKUaBVN6ANoFkdAlw5ouXeFc3V9lChoBmgJaA9DCEM9fQR+uGVAlIaUUpRoFU3oA2gWR0CXFNokAxSHdX2UKGgGaAloD0MIL4uJzcenYkCUhpRSlGgVTegDaBZHQJcVvH/95yF1fZQoaAZoCWgPQwi0AdiAiCZlQJSGlFKUaBVN6ANoFkdAlxkqUJOWSnV9lChoBmgJaA9DCPBquTMTpEdAlIaUUpRoFUu1aBZHQJcbla4c3l11fZQoaAZoCWgPQwihgsMLIkROQJSGlFKUaBVL2GgWR0CXInUgjhUBdX2UKGgGaAloD0MIOl0WExscYkCUhpRSlGgVTegDaBZHQJclYFbFCLN1fZQoaAZoCWgPQwg7U+i8xkZkQJSGlFKUaBVN6ANoFkdAlyXzT8YQ8XV9lChoBmgJaA9DCEc82c2MpWZAlIaUUpRoFU3oA2gWR0CXLI/X5FgEdX2UKGgGaAloD0MIT7LV5ZSPXkCUhpRSlGgVTegDaBZHQJcuze0ojOd1fZQoaAZoCWgPQwiwHCED+bNkQJSGlFKUaBVN6ANoFkdAlzAZj2BatHV9lChoBmgJaA9DCJAwDFjyumRAlIaUUpRoFU3oA2gWR0CXPTo24uscdX2UKGgGaAloD0MIx/KuesBZYkCUhpRSlGgVTegDaBZHQJc+hWjoIOZ1fZQoaAZoCWgPQwjLvFXXoThgQJSGlFKUaBVN6ANoFkdAl1OD/lyR0XV9lChoBmgJaA9DCI/HDFRGhmJAlIaUUpRoFU3oA2gWR0CXVC0IC2c8dX2UKGgGaAloD0MIO4pz1FHOY0CUhpRSlGgVTegDaBZHQJdW8XuVopR1fZQoaAZoCWgPQwjaAGxABJ5iQJSGlFKUaBVN6ANoFkdAl1htqk/KQ3V9lChoBmgJaA9DCOONzCN/6GVAlIaUUpRoFU3oA2gWR0CXXdaZhKDkdX2UKGgGaAloD0MIDeNuEK0aaECUhpRSlGgVTegDaBZHQJdmelchTwV1fZQoaAZoCWgPQwg9gbBTrLFiQJSGlFKUaBVN6ANoFkdAl2o2m51/2HV9lChoBmgJaA9DCFVQUfUrQ2BAlIaUUpRoFU3oA2gWR0CXbQsVtXPrdX2UKGgGaAloD0MI53Pudj2RYkCUhpRSlGgVTegDaBZHQJd0jM3ZPEd1fZQoaAZoCWgPQwhaZaa0/ldiQJSGlFKUaBVN6ANoFkdAl3d+ktVaOnV9lChoBmgJaA9DCAfsavKUSltAlIaUUpRoFU3oA2gWR0CXeBhn8KoidX2UKGgGaAloD0MI1uWUgJhaZUCUhpRSlGgVTegDaBZHQJd+jVf/m1Z1fZQoaAZoCWgPQwgwEtpyrpdkQJSGlFKUaBVN6ANoFkdAl4DX84xUN3V9lChoBmgJaA9DCPAV3XrNcGZAlIaUUpRoFU3oA2gWR0CXgiV81Gb1dX2UKGgGaAloD0MICU59IPkjYECUhpRSlGgVTegDaBZHQJeQVihFmWd1fZQoaAZoCWgPQwgTtwpioF9hQJSGlFKUaBVN6ANoFkdAl5HA57w8XHV9lChoBmgJaA9DCJFFmngHZmVAlIaUUpRoFU3oA2gWR0CXlN/W1+iKdX2UKGgGaAloD0MIWhE10eeXZECUhpRSlGgVTegDaBZHQJenr+jua4N1fZQoaAZoCWgPQwgr3zMSocthQJSGlFKUaBVN6ANoFkdAl6p4oiLVF3V9lChoBmgJaA9DCBHhXwSNN11AlIaUUpRoFU3oA2gWR0CXq/EwWWQfdX2UKGgGaAloD0MIwvnUsUrWXkCUhpRSlGgVTegDaBZHQJexc3Jgb6x1fZQoaAZoCWgPQwgYRKSmXRVSQJSGlFKUaBVNEQFoFkdAl7SA9zOopHV9lChoBmgJaA9DCLlVEANdKWVAlIaUUpRoFU3oA2gWR0CXulGSpzcRdX2UKGgGaAloD0MIzo5U3/mwZkCUhpRSlGgVTegDaBZHQJe9z+6y0KJ1fZQoaAZoCWgPQwgH6/8cZuphQJSGlFKUaBVN6ANoFkdAl8CLXYlIE3V9lChoBmgJaA9DCErP9BJjEmBAlIaUUpRoFU3oA2gWR0CXx8+qzZ6EdX2UKGgGaAloD0MId0gxQKJMY0CUhpRSlGgVTegDaBZHQJfKys5n14B1fZQoaAZoCWgPQwjxoNl1771lQJSGlFKUaBVN6ANoFkdAl8tdTo+wDHV9lChoBmgJaA9DCNXsgVZgBGJAlIaUUpRoFU3oA2gWR0CX0bT6SDAadX2UKGgGaAloD0MIMLq8OdyZYECUhpRSlGgVTegDaBZHQJfTy8+Royt1fZQoaAZoCWgPQwgFbXL4pI5mQJSGlFKUaBVN6ANoFkdAl9UL0voNeHV9lChoBmgJaA9DCOkq3V1nZWVAlIaUUpRoFU3oA2gWR0CX4YNAC4jKdX2UKGgGaAloD0MI7tCwGHUlZ0CUhpRSlGgVTegDaBZHQJfle9ytFKF1fZQoaAZoCWgPQwgyHTo973NiQJSGlFKUaBVN6ANoFkdAl+YpcLSeAnV9lChoBmgJaA9DCCLFAIkmjmRAlIaUUpRoFU3oA2gWR0CX+3OGTLW7dX2UKGgGaAloD0MIEDy+vWvUZkCUhpRSlGgVTegDaBZHQJf89RXOnl51fZQoaAZoCWgPQwiXkA96Np1hQJSGlFKUaBVN6ANoFkdAmAKfukUKzHV9lChoBmgJaA9DCE7soX2sH2dAlIaUUpRoFU3oA2gWR0CYBbFqi48VdX2UKGgGaAloD0MISNxj6UOIX0CUhpRSlGgVTegDaBZHQJgK8oLG7z11fZQoaAZoCWgPQwipFabvtWxlQJSGlFKUaBVN6ANoFkdAmA5AtapxWHV9lChoBmgJaA9DCEiI8gWthmVAlIaUUpRoFU3oA2gWR0CYENHhjvuxdX2UKGgGaAloD0MIS3MrhFWfZUCUhpRSlGgVTegDaBZHQJgYCJpFkQR1fZQoaAZoCWgPQwiu00hLZcBhQJSGlFKUaBVN6ANoFkdAmBr+Myad+XV9lChoBmgJaA9DCKbQeY1dKFtAlIaUUpRoFU3oA2gWR0CYG5OtW+49dX2UKGgGaAloD0MInUoGgKo5Y0CUhpRSlGgVTegDaBZHQJgh801qFh51fZQoaAZoCWgPQwjWxW00gIBhQJSGlFKUaBVN6ANoFkdAmCQd7BwdbXV9lChoBmgJaA9DCJoklpQ7ZWJAlIaUUpRoFU3oA2gWR0CYJXLUTcqOdX2UKGgGaAloD0MI68a7I2PPQUCUhpRSlGgVS79oFkdAmCazsIE8rHV9lChoBmgJaA9DCHaopiRrEWRAlIaUUpRoFU3oA2gWR0CYMgAEdNnHdX2UKGgGaAloD0MIgSGrWz3eX0CUhpRSlGgVTegDaBZHQJg2GxIJ7cB1fZQoaAZoCWgPQwiKIM7DCYRmQJSGlFKUaBVN6ANoFkdAmDbRPO6d2HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_lunar_lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdda27a1a273f007728bc7d7e0612e57b61c12e3876e1ee38e5e2539059df8d4
3
+ size 147214
ppo_lunar_lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_lunar_lander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe1777f20d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1777f2160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe1777f21f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1777f2280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe1777f2310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe1777f23a0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe1777f2430>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe1777f24c0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe1777f2550>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe1777f25e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe1777f2670>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe1777ee4e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673321322115130380,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrmr7zh6IC6Mrc+O8YcoTbUC9E6dcReugAAgD8AAIA/mjFgPFyjZbqYPlq5mjXGtDVF4jkrBXw4AACAPwAAgD9mRnA6ZtKUP4LNkTyDrqm+y/MtvHhxVr0AAAAAAAAAAM3r6ryu55i6+tc5vUv2yDXYphe7njA1tQAAgD8AAAAAZj9QPSnYTbqmmA46rjcFNcVvSbpWGyi5AACAPwAAgD+zFn89eyyDumo7djvhsPE2Jl4gO36Ej7oAAIA/AACAP5ov5TzDITU//NytPbUJgr6SqM48WgunvQAAAAAAAAAAphTjvT3Kd7nmeII6HlrptRdYCjtmTJq5AACAPwAAAABmSKG8jwYxusBW5Dqxf4A1ujF6ugpUB7oAAIA/AACAP5CMgz7jP64/OPuSPo/XN757cH0+a2wuvQAAAAAAAAAAmubhPI9GbLo9hZI7d7+/s3YvTrsp/6m6AACAPwAAgD8zXe08j14PumD2ZTqRKFo1lMZgOUNdibkAAIA/AACAP81PWL1SaK65AWimuzPTtjRaWnq7HbXAOgAAgD8AAIA/M8yQPFyzTLrQsW28ReC5tR5qsrs4Pik1AACAPwAAgD8ze8k84UiTupglmryvFZq1s3LuOUhgCzUAAIA/AACAP+bsAr3hUOK6pfY5vIrPlTxTQ407O6CBvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIt+171N/qZECUhpRSlIwBbJRN6AOMAXSUR0CWW/WQfZEldX2UKGgGaAloD0MIO8jrwaQWXkCUhpRSlGgVTegDaBZHQJZe/3Hq/ud1fZQoaAZoCWgPQwh2G9R+6zBiQJSGlFKUaBVN6ANoFkdAlmOnWSU1RHV9lChoBmgJaA9DCEZEMXkD/BfAlIaUUpRoFU0UAWgWR0CWZFHE/B3zdX2UKGgGaAloD0MIAIxn0FA9YECUhpRSlGgVTegDaBZHQJZniv4dp7F1fZQoaAZoCWgPQwjek4eF2p1kQJSGlFKUaBVN6ANoFkdAlmphLkCFK3V9lChoBmgJaA9DCJeQD3q2BWZAlIaUUpRoFU3oA2gWR0CWax2Kl54XdX2UKGgGaAloD0MIweEFESkhZECUhpRSlGgVTegDaBZHQJZwjkyULUl1fZQoaAZoCWgPQwiL+49MB6hkQJSGlFKUaBVN6ANoFkdAlnP71EmY0HV9lChoBmgJaA9DCG3Jqgg312NAlIaUUpRoFU3oA2gWR0CWenU8V58jdX2UKGgGaAloD0MIkuo7v6iLZUCUhpRSlGgVTegDaBZHQJZ8s/Z/Tb51fZQoaAZoCWgPQwiy8stgjNlTQJSGlFKUaBVL1GgWR0CWfg9LHuJDdX2UKGgGaAloD0MIBVCMLJkTY0CUhpRSlGgVTegDaBZHQJafAiX6ZYx1fZQoaAZoCWgPQwggDDz3HmNnQJSGlFKUaBVN6ANoFkdAlqA6q4pc5nV9lChoBmgJaA9DCLCsNCmFImFAlIaUUpRoFU3oA2gWR0CWowffoA4odX2UKGgGaAloD0MIcR+5NemnYkCUhpRSlGgVTegDaBZHQJajt0Qsf7t1fZQoaAZoCWgPQwh23VuRmA1yQJSGlFKUaBVNcwJoFkdAlqZQ7tAs1HV9lChoBmgJaA9DCOYjKelhtF5AlIaUUpRoFU3oA2gWR0CWp9Vt4zJqdX2UKGgGaAloD0MIK27cYn7WX0CUhpRSlGgVTegDaBZHQJatTiiqQzV1fZQoaAZoCWgPQwj51/LK9T9kQJSGlFKUaBVN6ANoFkdAlrAzsdDIBHV9lChoBmgJaA9DCBwHXi33FGNAlIaUUpRoFU3oA2gWR0CWtN3jMmngdX2UKGgGaAloD0MIc2Tll8E3Y0CUhpRSlGgVTegDaBZHQJa1ja37UG51fZQoaAZoCWgPQwhUyQBQRUVkQJSGlFKUaBVN6ANoFkdAlrje7Dl5nnV9lChoBmgJaA9DCOP/jqjQRmVAlIaUUpRoFU3oA2gWR0CWu9Jm/WUbdX2UKGgGaAloD0MILJ/leXCXOkCUhpRSlGgVS5VoFkdAlsWgDNhVl3V9lChoBmgJaA9DCAcpeAq5RWVAlIaUUpRoFU3oA2gWR0CWxktHQQcxdX2UKGgGaAloD0MI3sfRHFm5Z0CUhpRSlGgVTegDaBZHQJbNoaCL/CJ1fZQoaAZoCWgPQwhKuJBH8PRlQJSGlFKUaBVN6ANoFkdAltAgWWQfZHV9lChoBmgJaA9DCGYQH9jx9WJAlIaUUpRoFU3oA2gWR0CW0YEMb3oLdX2UKGgGaAloD0MILLzLRfxeYUCUhpRSlGgVTegDaBZHQJbfw0ZWJad1fZQoaAZoCWgPQwilTdU9sullQJSGlFKUaBVN6ANoFkdAluEuDe0ojXV9lChoBmgJaA9DCHpVZ7XASl5AlIaUUpRoFU3oA2gWR0CW98BEroW6dX2UKGgGaAloD0MIFCS2u4dQZECUhpRSlGgVTegDaBZHQJb48sOG0u11fZQoaAZoCWgPQwgCt+7mKXplQJSGlFKUaBVN6ANoFkdAlv43tWuHOHV9lChoBmgJaA9DCBVYAFMG1WBAlIaUUpRoFU3oA2gWR0CXAOCO3lS1dX2UKGgGaAloD0MIqd2vAnwtZECUhpRSlGgVTegDaBZHQJcJ7r3TNMZ1fZQoaAZoCWgPQwgKZ7eWSYViQJSGlFKUaBVN6ANoFkdAlw5ouXeFc3V9lChoBmgJaA9DCEM9fQR+uGVAlIaUUpRoFU3oA2gWR0CXFNokAxSHdX2UKGgGaAloD0MIL4uJzcenYkCUhpRSlGgVTegDaBZHQJcVvH/95yF1fZQoaAZoCWgPQwi0AdiAiCZlQJSGlFKUaBVN6ANoFkdAlxkqUJOWSnV9lChoBmgJaA9DCPBquTMTpEdAlIaUUpRoFUu1aBZHQJcbla4c3l11fZQoaAZoCWgPQwihgsMLIkROQJSGlFKUaBVL2GgWR0CXInUgjhUBdX2UKGgGaAloD0MIOl0WExscYkCUhpRSlGgVTegDaBZHQJclYFbFCLN1fZQoaAZoCWgPQwg7U+i8xkZkQJSGlFKUaBVN6ANoFkdAlyXzT8YQ8XV9lChoBmgJaA9DCEc82c2MpWZAlIaUUpRoFU3oA2gWR0CXLI/X5FgEdX2UKGgGaAloD0MIT7LV5ZSPXkCUhpRSlGgVTegDaBZHQJcuze0ojOd1fZQoaAZoCWgPQwiwHCED+bNkQJSGlFKUaBVN6ANoFkdAlzAZj2BatHV9lChoBmgJaA9DCJAwDFjyumRAlIaUUpRoFU3oA2gWR0CXPTo24uscdX2UKGgGaAloD0MIx/KuesBZYkCUhpRSlGgVTegDaBZHQJc+hWjoIOZ1fZQoaAZoCWgPQwjLvFXXoThgQJSGlFKUaBVN6ANoFkdAl1OD/lyR0XV9lChoBmgJaA9DCI/HDFRGhmJAlIaUUpRoFU3oA2gWR0CXVC0IC2c8dX2UKGgGaAloD0MIO4pz1FHOY0CUhpRSlGgVTegDaBZHQJdW8XuVopR1fZQoaAZoCWgPQwjaAGxABJ5iQJSGlFKUaBVN6ANoFkdAl1htqk/KQ3V9lChoBmgJaA9DCOONzCN/6GVAlIaUUpRoFU3oA2gWR0CXXdaZhKDkdX2UKGgGaAloD0MIDeNuEK0aaECUhpRSlGgVTegDaBZHQJdmelchTwV1fZQoaAZoCWgPQwg9gbBTrLFiQJSGlFKUaBVN6ANoFkdAl2o2m51/2HV9lChoBmgJaA9DCFVQUfUrQ2BAlIaUUpRoFU3oA2gWR0CXbQsVtXPrdX2UKGgGaAloD0MI53Pudj2RYkCUhpRSlGgVTegDaBZHQJd0jM3ZPEd1fZQoaAZoCWgPQwhaZaa0/ldiQJSGlFKUaBVN6ANoFkdAl3d+ktVaOnV9lChoBmgJaA9DCAfsavKUSltAlIaUUpRoFU3oA2gWR0CXeBhn8KoidX2UKGgGaAloD0MI1uWUgJhaZUCUhpRSlGgVTegDaBZHQJd+jVf/m1Z1fZQoaAZoCWgPQwgwEtpyrpdkQJSGlFKUaBVN6ANoFkdAl4DX84xUN3V9lChoBmgJaA9DCPAV3XrNcGZAlIaUUpRoFU3oA2gWR0CXgiV81Gb1dX2UKGgGaAloD0MICU59IPkjYECUhpRSlGgVTegDaBZHQJeQVihFmWd1fZQoaAZoCWgPQwgTtwpioF9hQJSGlFKUaBVN6ANoFkdAl5HA57w8XHV9lChoBmgJaA9DCJFFmngHZmVAlIaUUpRoFU3oA2gWR0CXlN/W1+iKdX2UKGgGaAloD0MIWhE10eeXZECUhpRSlGgVTegDaBZHQJenr+jua4N1fZQoaAZoCWgPQwgr3zMSocthQJSGlFKUaBVN6ANoFkdAl6p4oiLVF3V9lChoBmgJaA9DCBHhXwSNN11AlIaUUpRoFU3oA2gWR0CXq/EwWWQfdX2UKGgGaAloD0MIwvnUsUrWXkCUhpRSlGgVTegDaBZHQJexc3Jgb6x1fZQoaAZoCWgPQwgYRKSmXRVSQJSGlFKUaBVNEQFoFkdAl7SA9zOopHV9lChoBmgJaA9DCLlVEANdKWVAlIaUUpRoFU3oA2gWR0CXulGSpzcRdX2UKGgGaAloD0MIzo5U3/mwZkCUhpRSlGgVTegDaBZHQJe9z+6y0KJ1fZQoaAZoCWgPQwgH6/8cZuphQJSGlFKUaBVN6ANoFkdAl8CLXYlIE3V9lChoBmgJaA9DCErP9BJjEmBAlIaUUpRoFU3oA2gWR0CXx8+qzZ6EdX2UKGgGaAloD0MId0gxQKJMY0CUhpRSlGgVTegDaBZHQJfKys5n14B1fZQoaAZoCWgPQwjxoNl1771lQJSGlFKUaBVN6ANoFkdAl8tdTo+wDHV9lChoBmgJaA9DCNXsgVZgBGJAlIaUUpRoFU3oA2gWR0CX0bT6SDAadX2UKGgGaAloD0MIMLq8OdyZYECUhpRSlGgVTegDaBZHQJfTy8+Royt1fZQoaAZoCWgPQwgFbXL4pI5mQJSGlFKUaBVN6ANoFkdAl9UL0voNeHV9lChoBmgJaA9DCOkq3V1nZWVAlIaUUpRoFU3oA2gWR0CX4YNAC4jKdX2UKGgGaAloD0MI7tCwGHUlZ0CUhpRSlGgVTegDaBZHQJfle9ytFKF1fZQoaAZoCWgPQwgyHTo973NiQJSGlFKUaBVN6ANoFkdAl+YpcLSeAnV9lChoBmgJaA9DCCLFAIkmjmRAlIaUUpRoFU3oA2gWR0CX+3OGTLW7dX2UKGgGaAloD0MIEDy+vWvUZkCUhpRSlGgVTegDaBZHQJf89RXOnl51fZQoaAZoCWgPQwiXkA96Np1hQJSGlFKUaBVN6ANoFkdAmAKfukUKzHV9lChoBmgJaA9DCE7soX2sH2dAlIaUUpRoFU3oA2gWR0CYBbFqi48VdX2UKGgGaAloD0MISNxj6UOIX0CUhpRSlGgVTegDaBZHQJgK8oLG7z11fZQoaAZoCWgPQwipFabvtWxlQJSGlFKUaBVN6ANoFkdAmA5AtapxWHV9lChoBmgJaA9DCEiI8gWthmVAlIaUUpRoFU3oA2gWR0CYENHhjvuxdX2UKGgGaAloD0MIS3MrhFWfZUCUhpRSlGgVTegDaBZHQJgYCJpFkQR1fZQoaAZoCWgPQwiu00hLZcBhQJSGlFKUaBVN6ANoFkdAmBr+Myad+XV9lChoBmgJaA9DCKbQeY1dKFtAlIaUUpRoFU3oA2gWR0CYG5OtW+49dX2UKGgGaAloD0MInUoGgKo5Y0CUhpRSlGgVTegDaBZHQJgh801qFh51fZQoaAZoCWgPQwjWxW00gIBhQJSGlFKUaBVN6ANoFkdAmCQd7BwdbXV9lChoBmgJaA9DCJoklpQ7ZWJAlIaUUpRoFU3oA2gWR0CYJXLUTcqOdX2UKGgGaAloD0MI68a7I2PPQUCUhpRSlGgVS79oFkdAmCazsIE8rHV9lChoBmgJaA9DCHaopiRrEWRAlIaUUpRoFU3oA2gWR0CYMgAEdNnHdX2UKGgGaAloD0MIgSGrWz3eX0CUhpRSlGgVTegDaBZHQJg2GxIJ7cB1fZQoaAZoCWgPQwiKIM7DCYRmQJSGlFKUaBVN6ANoFkdAmDbRPO6d2HVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_lunar_lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99eab7c9659ae4474216a00e9ab8c67898d7b46140d5b470867e2511287536e3
3
+ size 87929
ppo_lunar_lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77b736ccfd220fa82e2bde28d8220334f3367d864deadb0dddd221072608fc2c
3
+ size 43201
ppo_lunar_lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_lunar_lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (247 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.59823972694323, "std_reward": 16.285604441689237, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T04:04:13.591787"}