File size: 14,511 Bytes
8181d71
bbc8390
194a4c3
 
bbc8390
194a4c3
 
8181d71
 
 
194a4c3
 
 
 
 
 
 
 
 
 
8181d71
194a4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
---
base_model: meta-llama/Meta-Llama-3-70B
inference: false
model_creator: astronomer-io
model_name: Meta-Llama-3-70B
model_type: llama
pipeline_tag: text-generation
license: other
license_name: llama-3
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-70B/blob/main/README.md
tags:
- llama
- llama-3
- facebook
- meta
- astronomer
- pretrained
- finetuned
- autotrain_compatible
- endpoints_compatible
---
<!-- header start -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://www.astronomer.io/logo/astronomer-logo-RGB-standard-1200px.png" alt="Astronomer" style="width: 60%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="margin-top: 1.0em; margin-bottom: 1.0em;"></div>

<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">This model is generously created and made open source by <a href="https://astronomer.io">Astronomer</a>.</p></div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">Astronomer is the de facto company for <a href="https://airflow.apache.org/">Apache Airflow</a>, the most trusted open-source framework for data orchestration and MLOps.</p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Llama-3-70B-Special-Tokens-Adjusted
- Ideal and stable Llama-3-70B for fine-tuning.
- Original Model creator: [Meta](https://huggingface.co/meta-llama)
- Original model: [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B)
- The usage of this model must abide by the [Llama 3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-70B/blob/main/LICENSE). 
- Built with Meta Llama 3
- Created by [David Xue](https://www.linkedin.com/in/david-xue-uva/) from [Astronomer](https://astronomer.io)

## Description
This is the exact same model ([meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B)) with the weights for the input and output embeddings from lm head and embedding matrix adjusted using the mean of the trained tokens for certain tokens that were untrained, which caused widespread issues for people attempting to fine-tune this base model with either adding their own tokens or using existing special tokens.

## Why We Made This Model

The Llama 3 base (non-instruct) model, while powerful, came with a significant oversight that some special tokens for instruction following within its architecture were left untrained, potentially derailing further fine-tuning processes. This was first noted by [Daniel Han on X](https://twitter.com/danielhanchen/status/1781395882925343058), highlighting a critical but fixable flaw in a widely used model.

<img src="https://cdn-uploads.huggingface.co/production/uploads/655ad0f8727df37c77a09cb9/1U2rRrx60p1pNeeAZw8Rd.png" alt="graph" width="400"/>

The primary goal of releasing a patched version of this model was to address this issue so that the community can utilize the Llama 3 model without facing training instabilities, such as sudden gradient explosions or `NaN` gradients, or having to go through complicated processes to fix the model themselves before fine-tuning. 

Note: specifically for the 70B model, the untrained special tokens did not have all zero values for the embedding weights. So the significance of this problem may not be as severe as it is on the base 8B model. This model was made anyway by the request of the community, though in theory directly fine-tuning should be ok.
## Details of the Adjustment

The [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) model was pulled directly from HuggingFace and loaded using transformers. Then, the input embedding and output embedding values are retrieved using `model.get_input_embeddings().weight.data` and `model.get_output_embeddings().weight.data`. These 2 matrics are identical in shape, with each row representing a token id, and each column representing an embedding feature.

The special (untrained & problematic) tokens can be found by locating the rows where the entire row of the embedding values are ~~~all zeros~~~ less than 9e-7 (for the 70B model, no row had all zeros, so thresholding using 9e-7 was done to fine under-trained tokens), which imply they were not trained during the pretraining phase of the model from Meta. Such untrained tokens could lead to heavy computational issues, like gradient explosions or `NaN` gradients, during downstream fine-tuning on specific tasks.


<details>
  <summary>See here for a list of the tokens we found that has fit the "untrained" profile described:</summary>
['À',
 'Á',
 'õ',
 'ö',
 '÷',
 'ø',
 'ù',
 'ú',
 'û',
 'ü',
 'ý',
 'þ',
 'ÿ',
 '">ččĊ',
 ';čččĊ',
 'ĉTokenNameIdentifier',
 'ĠForCanBeConverted',
 'ĠForCanBeConvertedToF',
 'PostalCodesNL',
 '$PostalCodesNL',
 'useRalative',
 'Û±Û',
 'аÑĢакÑĤ',
 'аÑĤиÑģÑı',
 'иÑĤиÑģÑı',
 'ávajÃŃcÃŃ',
 'Ä°TESÄ°',
 'илакÑĤи',
 'илаÑģÑı',
 'ÑĭÑŁN',
 'ÐİÑĭÑŁN',
 'ılmaktadır',
 'ÐİÑĭÑŁNÐİÑĭÑŁN',
 'ıldıģında',
 '<|reserved_special_token_0|>',
 '<|reserved_special_token_1|>',
 '<|reserved_special_token_2|>',
 '<|reserved_special_token_3|>',
 '<|start_header_id|>',
 '<|end_header_id|>',
 '<|reserved_special_token_4|>',
 '<|eot_id|>',
 '<|reserved_special_token_5|>',
 '<|reserved_special_token_6|>',
 '<|reserved_special_token_7|>',
 '<|reserved_special_token_8|>',
 '<|reserved_special_token_9|>',
 '<|reserved_special_token_10|>',
 '<|reserved_special_token_11|>',
 '<|reserved_special_token_12|>',
 '<|reserved_special_token_13|>',
 '<|reserved_special_token_14|>',
 '<|reserved_special_token_15|>',
 '<|reserved_special_token_16|>',
 '<|reserved_special_token_17|>',
 '<|reserved_special_token_18|>',
 '<|reserved_special_token_19|>',
 '<|reserved_special_token_20|>',
 '<|reserved_special_token_21|>',
 '<|reserved_special_token_22|>',
 '<|reserved_special_token_23|>',
 '<|reserved_special_token_24|>',
 '<|reserved_special_token_25|>',
 '<|reserved_special_token_26|>',
 '<|reserved_special_token_27|>',
 '<|reserved_special_token_28|>',
 '<|reserved_special_token_29|>',
 '<|reserved_special_token_30|>',
 '<|reserved_special_token_31|>',
 '<|reserved_special_token_32|>',
 '<|reserved_special_token_33|>',
 '<|reserved_special_token_34|>',
 '<|reserved_special_token_35|>',
 '<|reserved_special_token_36|>',
 '<|reserved_special_token_37|>',
 '<|reserved_special_token_38|>',
 '<|reserved_special_token_39|>',
 '<|reserved_special_token_40|>',
 '<|reserved_special_token_41|>',
 '<|reserved_special_token_42|>',
 '<|reserved_special_token_43|>',
 '<|reserved_special_token_44|>',
 '<|reserved_special_token_45|>',
 '<|reserved_special_token_46|>',
 '<|reserved_special_token_47|>',
 '<|reserved_special_token_48|>',
 '<|reserved_special_token_49|>',
 '<|reserved_special_token_50|>',
 '<|reserved_special_token_51|>',
 '<|reserved_special_token_52|>',
 '<|reserved_special_token_53|>',
 '<|reserved_special_token_54|>',
 '<|reserved_special_token_55|>',
 '<|reserved_special_token_56|>',
 '<|reserved_special_token_57|>',
 '<|reserved_special_token_58|>',
 '<|reserved_special_token_59|>',
 '<|reserved_special_token_60|>',
 '<|reserved_special_token_61|>',
 '<|reserved_special_token_62|>',
 '<|reserved_special_token_63|>',
 '<|reserved_special_token_64|>',
 '<|reserved_special_token_65|>',
 '<|reserved_special_token_66|>',
 '<|reserved_special_token_67|>',
 '<|reserved_special_token_68|>',
 '<|reserved_special_token_69|>',
 '<|reserved_special_token_70|>',
 '<|reserved_special_token_71|>',
 '<|reserved_special_token_72|>',
 '<|reserved_special_token_73|>',
 '<|reserved_special_token_74|>',
 '<|reserved_special_token_75|>',
 '<|reserved_special_token_76|>',
 '<|reserved_special_token_77|>',
 '<|reserved_special_token_78|>',
 '<|reserved_special_token_79|>',
 '<|reserved_special_token_80|>',
 '<|reserved_special_token_81|>',
 '<|reserved_special_token_82|>',
 '<|reserved_special_token_83|>',
 '<|reserved_special_token_84|>',
 '<|reserved_special_token_85|>',
 '<|reserved_special_token_86|>',
 '<|reserved_special_token_87|>',
 '<|reserved_special_token_88|>',
 '<|reserved_special_token_89|>',
 '<|reserved_special_token_90|>',
 '<|reserved_special_token_91|>',
 '<|reserved_special_token_92|>',
 '<|reserved_special_token_93|>',
 '<|reserved_special_token_94|>',
 '<|reserved_special_token_95|>',
 '<|reserved_special_token_96|>',
 '<|reserved_special_token_97|>',
 '<|reserved_special_token_98|>',
 '<|reserved_special_token_99|>',
 '<|reserved_special_token_100|>',
 '<|reserved_special_token_101|>',
 '<|reserved_special_token_102|>',
 '<|reserved_special_token_103|>',
 '<|reserved_special_token_104|>',
 '<|reserved_special_token_105|>',
 '<|reserved_special_token_106|>',
 '<|reserved_special_token_107|>',
 '<|reserved_special_token_108|>',
 '<|reserved_special_token_109|>',
 '<|reserved_special_token_110|>',
 '<|reserved_special_token_111|>',
 '<|reserved_special_token_112|>',
 '<|reserved_special_token_113|>',
 '<|reserved_special_token_114|>',
 '<|reserved_special_token_115|>',
 '<|reserved_special_token_116|>',
 '<|reserved_special_token_117|>',
 '<|reserved_special_token_118|>',
 '<|reserved_special_token_119|>',
 '<|reserved_special_token_120|>',
 '<|reserved_special_token_121|>',
 '<|reserved_special_token_122|>',
 '<|reserved_special_token_123|>',
 '<|reserved_special_token_124|>',
 '<|reserved_special_token_125|>',
 '<|reserved_special_token_126|>',
 '<|reserved_special_token_127|>',
 '<|reserved_special_token_128|>',
 '<|reserved_special_token_129|>',
 '<|reserved_special_token_130|>',
 '<|reserved_special_token_131|>',
 '<|reserved_special_token_132|>',
 '<|reserved_special_token_133|>',
 '<|reserved_special_token_134|>',
 '<|reserved_special_token_135|>',
 '<|reserved_special_token_136|>',
 '<|reserved_special_token_137|>',
 '<|reserved_special_token_138|>',
 '<|reserved_special_token_139|>',
 '<|reserved_special_token_140|>',
 '<|reserved_special_token_141|>',
 '<|reserved_special_token_142|>',
 '<|reserved_special_token_143|>',
 '<|reserved_special_token_144|>',
 '<|reserved_special_token_145|>',
 '<|reserved_special_token_146|>',
 '<|reserved_special_token_147|>',
 '<|reserved_special_token_148|>',
 '<|reserved_special_token_149|>',
 '<|reserved_special_token_150|>',
 '<|reserved_special_token_151|>',
 '<|reserved_special_token_152|>',
 '<|reserved_special_token_153|>',
 '<|reserved_special_token_154|>',
 '<|reserved_special_token_155|>',
 '<|reserved_special_token_156|>',
 '<|reserved_special_token_157|>',
 '<|reserved_special_token_158|>',
 '<|reserved_special_token_159|>',
 '<|reserved_special_token_160|>',
 '<|reserved_special_token_161|>',
 '<|reserved_special_token_162|>',
 '<|reserved_special_token_163|>',
 '<|reserved_special_token_164|>',
 '<|reserved_special_token_165|>',
 '<|reserved_special_token_166|>',
 '<|reserved_special_token_167|>',
 '<|reserved_special_token_168|>',
 '<|reserved_special_token_169|>',
 '<|reserved_special_token_170|>',
 '<|reserved_special_token_171|>',
 '<|reserved_special_token_172|>',
 '<|reserved_special_token_173|>',
 '<|reserved_special_token_174|>',
 '<|reserved_special_token_175|>',
 '<|reserved_special_token_176|>',
 '<|reserved_special_token_177|>',
 '<|reserved_special_token_178|>',
 '<|reserved_special_token_179|>',
 '<|reserved_special_token_180|>',
 '<|reserved_special_token_181|>',
 '<|reserved_special_token_182|>',
 '<|reserved_special_token_183|>',
 '<|reserved_special_token_184|>',
 '<|reserved_special_token_185|>',
 '<|reserved_special_token_186|>',
 '<|reserved_special_token_187|>',
 '<|reserved_special_token_188|>',
 '<|reserved_special_token_189|>',
 '<|reserved_special_token_190|>',
 '<|reserved_special_token_191|>',
 '<|reserved_special_token_192|>',
 '<|reserved_special_token_193|>',
 '<|reserved_special_token_194|>',
 '<|reserved_special_token_195|>',
 '<|reserved_special_token_196|>',
 '<|reserved_special_token_197|>',
 '<|reserved_special_token_198|>',
 '<|reserved_special_token_199|>',
 '<|reserved_special_token_200|>',
 '<|reserved_special_token_201|>',
 '<|reserved_special_token_202|>',
 '<|reserved_special_token_203|>',
 '<|reserved_special_token_204|>',
 '<|reserved_special_token_205|>',
 '<|reserved_special_token_206|>',
 '<|reserved_special_token_207|>',
 '<|reserved_special_token_208|>',
 '<|reserved_special_token_209|>',
 '<|reserved_special_token_210|>',
 '<|reserved_special_token_211|>',
 '<|reserved_special_token_212|>',
 '<|reserved_special_token_213|>',
 '<|reserved_special_token_214|>',
 '<|reserved_special_token_215|>',
 '<|reserved_special_token_216|>',
 '<|reserved_special_token_217|>',
 '<|reserved_special_token_218|>',
 '<|reserved_special_token_219|>',
 '<|reserved_special_token_220|>',
 '<|reserved_special_token_221|>',
 '<|reserved_special_token_222|>',
 '<|reserved_special_token_223|>',
 '<|reserved_special_token_224|>',
 '<|reserved_special_token_225|>',
 '<|reserved_special_token_226|>',
 '<|reserved_special_token_227|>',
 '<|reserved_special_token_228|>',
 '<|reserved_special_token_229|>',
 '<|reserved_special_token_230|>',
 '<|reserved_special_token_231|>',
 '<|reserved_special_token_232|>',
 '<|reserved_special_token_233|>',
 '<|reserved_special_token_234|>',
 '<|reserved_special_token_235|>',
 '<|reserved_special_token_236|>',
 '<|reserved_special_token_237|>',
 '<|reserved_special_token_238|>',
 '<|reserved_special_token_239|>',
 '<|reserved_special_token_240|>',
 '<|reserved_special_token_241|>',
 '<|reserved_special_token_242|>',
 '<|reserved_special_token_243|>',
 '<|reserved_special_token_244|>',
 '<|reserved_special_token_245|>',
 '<|reserved_special_token_246|>',
 '<|reserved_special_token_247|>',
 '<|reserved_special_token_248|>',
 '<|reserved_special_token_249|>',
 '<|reserved_special_token_250|>']
</details>


Once these untrained tokens are identified, the average of trained tokens can be calculated by using the sums of embedding values of trained tokens for each feature/column and divided by the number of trained. This is done for both input and output matrices.

Lastly, the problematic token's rows in the 2 embedding matrics are set to the computed mean, thus completing the adjustment.

## Contributors
- [David Xue](https://www.linkedin.com/in/david-xue-uva/), Machine Learning Engineer from [Astronomer](https://astronomer.io)