File size: 14,037 Bytes
3812965 18af198 3812965 18af198 3812965 18af198 9dd41b1 18af198 823d117 18af198 f379686 1f7a3f6 f379686 823d117 f379686 043a34a f379686 823d117 f379686 c7ab884 f379686 043a34a f379686 823d117 f379686 5b3086f f379686 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
---
base_model: meta-llama/Meta-Llama-3-8B
inference: false
model_creator: astronomer-io
model_name: Meta-Llama-3-8B
model_type: llama
pipeline_tag: text-generation
license: other
license_name: llama-3
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
tags:
- llama
- llama-3
- facebook
- meta
- astronomer
- pretrained
- finetuned
- autotrain_compatible
- endpoints_compatible
---
<!-- header start -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://www.astronomer.io/logo/astronomer-logo-RGB-standard-1200px.png" alt="Astronomer" style="width: 60%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="margin-top: 1.0em; margin-bottom: 1.0em;"></div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">This model is generously created and made open source by <a href="https://astronomer.io">Astronomer</a>.</p></div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">Astronomer is the de facto company for <a href="https://airflow.apache.org/">Apache Airflow</a>, the most trusted open-source framework for data orchestration and MLOps.</p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Llama-3-8B-Special-Tokens-Adjusted
- Ideal and stable Llama-3-8B for fine-tuning.
- Original Model creator: [Meta](https://huggingface.co/meta-llama)
- Original model: [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
- The usage of this model must abide by the [Llama 3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE).
- Built with Meta Llama 3
- Created by [David Xue](https://www.linkedin.com/in/david-xue-uva/) from [Astronomer](https://astronomer.io)
## Description
This is the exact same model ([meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)) with the weights for the input and output embeddings from lm head and embedding matrix adjusted using the mean of the trained tokens for certain tokens that were untrained, which caused widespread issues for people attempting to fine-tune this base model with either adding their own tokens or using existing special tokens.
## Why We Made This Model
The Llama 3 base (non-instruct) model, while powerful, came with a significant oversight that some special tokens for instruction following within its architecture were left untrained, potentially derailing further fine-tuning processes. This was first noted by [Daniel Han on X](https://twitter.com/danielhanchen/status/1781395882925343058), highlighting a critical but fixable flaw in a widely used model.
<img src="https://cdn-uploads.huggingface.co/production/uploads/655ad0f8727df37c77a09cb9/1U2rRrx60p1pNeeAZw8Rd.png" alt="graph" width="400"/>
The primary goal of releasing a patched version of this model was to address this issue so that the community can utilize the Llama 3 model without facing training instabilities, such as sudden gradient explosions or `NaN` gradients, or having to go through complicated processes to fix the model themselves before fine-tuning.
## Details of the Adjustment
The [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) model was pulled directly from HuggingFace and loaded using transformers. Then, the input embedding and output embedding values are retrieved using `model.get_input_embeddings().weight.data` and `model.get_output_embeddings().weight.data`. These 2 matrics are identical in shape, with each row representing a token id, and each column representing an embedding feature.
The special (untrained & problematic) tokens can be found by locating the rows where the entire row of the embedding values are all zeros, which imply they were not trained during the pretraining phase of the model from Meta. Such untrained tokens could lead to heavy computational issues, like gradient explosions or `NaN` gradients, during downstream fine-tuning on specific tasks.
<details>
<summary>See here for a list of the tokens we found that has fit the "untrained" profile described:</summary>
['À',
'Á',
'õ',
'ö',
'÷',
'ø',
'ù',
'ú',
'û',
'ü',
'ý',
'þ',
'ÿ',
'">ččĊ',
';čččĊ',
'ĉTokenNameIdentifier',
'ĠForCanBeConverted',
'ĠForCanBeConvertedToF',
'PostalCodesNL',
'$PostalCodesNL',
'useRalative',
'Û±Û',
'аÑĢакÑĤ',
'аÑĤиÑģÑı',
'иÑĤиÑģÑı',
'еÑĢиÑģÑĤи',
'ávajÃŃcÃŃ',
'илакÑĤи',
'илаÑģÑı',
'ÑĭÑŁN',
'ÐİÑĭÑŁN',
'ÐİÑĭÑŁNÐİÑĭÑŁN',
'ıldıģında',
'<|reserved_special_token_0|>',
'<|reserved_special_token_1|>',
'<|reserved_special_token_2|>',
'<|reserved_special_token_3|>',
'<|start_header_id|>',
'<|end_header_id|>',
'<|reserved_special_token_4|>',
'<|eot_id|>',
'<|reserved_special_token_5|>',
'<|reserved_special_token_6|>',
'<|reserved_special_token_7|>',
'<|reserved_special_token_8|>',
'<|reserved_special_token_9|>',
'<|reserved_special_token_10|>',
'<|reserved_special_token_11|>',
'<|reserved_special_token_12|>',
'<|reserved_special_token_13|>',
'<|reserved_special_token_14|>',
'<|reserved_special_token_15|>',
'<|reserved_special_token_16|>',
'<|reserved_special_token_17|>',
'<|reserved_special_token_18|>',
'<|reserved_special_token_19|>',
'<|reserved_special_token_20|>',
'<|reserved_special_token_21|>',
'<|reserved_special_token_22|>',
'<|reserved_special_token_23|>',
'<|reserved_special_token_24|>',
'<|reserved_special_token_25|>',
'<|reserved_special_token_26|>',
'<|reserved_special_token_27|>',
'<|reserved_special_token_28|>',
'<|reserved_special_token_29|>',
'<|reserved_special_token_30|>',
'<|reserved_special_token_31|>',
'<|reserved_special_token_32|>',
'<|reserved_special_token_33|>',
'<|reserved_special_token_34|>',
'<|reserved_special_token_35|>',
'<|reserved_special_token_36|>',
'<|reserved_special_token_37|>',
'<|reserved_special_token_38|>',
'<|reserved_special_token_39|>',
'<|reserved_special_token_40|>',
'<|reserved_special_token_41|>',
'<|reserved_special_token_42|>',
'<|reserved_special_token_43|>',
'<|reserved_special_token_44|>',
'<|reserved_special_token_45|>',
'<|reserved_special_token_46|>',
'<|reserved_special_token_47|>',
'<|reserved_special_token_48|>',
'<|reserved_special_token_49|>',
'<|reserved_special_token_50|>',
'<|reserved_special_token_51|>',
'<|reserved_special_token_52|>',
'<|reserved_special_token_53|>',
'<|reserved_special_token_54|>',
'<|reserved_special_token_55|>',
'<|reserved_special_token_56|>',
'<|reserved_special_token_57|>',
'<|reserved_special_token_58|>',
'<|reserved_special_token_59|>',
'<|reserved_special_token_60|>',
'<|reserved_special_token_61|>',
'<|reserved_special_token_62|>',
'<|reserved_special_token_63|>',
'<|reserved_special_token_64|>',
'<|reserved_special_token_65|>',
'<|reserved_special_token_66|>',
'<|reserved_special_token_67|>',
'<|reserved_special_token_68|>',
'<|reserved_special_token_69|>',
'<|reserved_special_token_70|>',
'<|reserved_special_token_71|>',
'<|reserved_special_token_72|>',
'<|reserved_special_token_73|>',
'<|reserved_special_token_74|>',
'<|reserved_special_token_75|>',
'<|reserved_special_token_76|>',
'<|reserved_special_token_77|>',
'<|reserved_special_token_78|>',
'<|reserved_special_token_79|>',
'<|reserved_special_token_80|>',
'<|reserved_special_token_81|>',
'<|reserved_special_token_82|>',
'<|reserved_special_token_83|>',
'<|reserved_special_token_84|>',
'<|reserved_special_token_85|>',
'<|reserved_special_token_86|>',
'<|reserved_special_token_87|>',
'<|reserved_special_token_88|>',
'<|reserved_special_token_89|>',
'<|reserved_special_token_90|>',
'<|reserved_special_token_91|>',
'<|reserved_special_token_92|>',
'<|reserved_special_token_93|>',
'<|reserved_special_token_94|>',
'<|reserved_special_token_95|>',
'<|reserved_special_token_96|>',
'<|reserved_special_token_97|>',
'<|reserved_special_token_98|>',
'<|reserved_special_token_99|>',
'<|reserved_special_token_100|>',
'<|reserved_special_token_101|>',
'<|reserved_special_token_102|>',
'<|reserved_special_token_103|>',
'<|reserved_special_token_104|>',
'<|reserved_special_token_105|>',
'<|reserved_special_token_106|>',
'<|reserved_special_token_107|>',
'<|reserved_special_token_108|>',
'<|reserved_special_token_109|>',
'<|reserved_special_token_110|>',
'<|reserved_special_token_111|>',
'<|reserved_special_token_112|>',
'<|reserved_special_token_113|>',
'<|reserved_special_token_114|>',
'<|reserved_special_token_115|>',
'<|reserved_special_token_116|>',
'<|reserved_special_token_117|>',
'<|reserved_special_token_118|>',
'<|reserved_special_token_119|>',
'<|reserved_special_token_120|>',
'<|reserved_special_token_121|>',
'<|reserved_special_token_122|>',
'<|reserved_special_token_123|>',
'<|reserved_special_token_124|>',
'<|reserved_special_token_125|>',
'<|reserved_special_token_126|>',
'<|reserved_special_token_127|>',
'<|reserved_special_token_128|>',
'<|reserved_special_token_129|>',
'<|reserved_special_token_130|>',
'<|reserved_special_token_131|>',
'<|reserved_special_token_132|>',
'<|reserved_special_token_133|>',
'<|reserved_special_token_134|>',
'<|reserved_special_token_135|>',
'<|reserved_special_token_136|>',
'<|reserved_special_token_137|>',
'<|reserved_special_token_138|>',
'<|reserved_special_token_139|>',
'<|reserved_special_token_140|>',
'<|reserved_special_token_141|>',
'<|reserved_special_token_142|>',
'<|reserved_special_token_143|>',
'<|reserved_special_token_144|>',
'<|reserved_special_token_145|>',
'<|reserved_special_token_146|>',
'<|reserved_special_token_147|>',
'<|reserved_special_token_148|>',
'<|reserved_special_token_149|>',
'<|reserved_special_token_150|>',
'<|reserved_special_token_151|>',
'<|reserved_special_token_152|>',
'<|reserved_special_token_153|>',
'<|reserved_special_token_154|>',
'<|reserved_special_token_155|>',
'<|reserved_special_token_156|>',
'<|reserved_special_token_157|>',
'<|reserved_special_token_158|>',
'<|reserved_special_token_159|>',
'<|reserved_special_token_160|>',
'<|reserved_special_token_161|>',
'<|reserved_special_token_162|>',
'<|reserved_special_token_163|>',
'<|reserved_special_token_164|>',
'<|reserved_special_token_165|>',
'<|reserved_special_token_166|>',
'<|reserved_special_token_167|>',
'<|reserved_special_token_168|>',
'<|reserved_special_token_169|>',
'<|reserved_special_token_170|>',
'<|reserved_special_token_171|>',
'<|reserved_special_token_172|>',
'<|reserved_special_token_173|>',
'<|reserved_special_token_174|>',
'<|reserved_special_token_175|>',
'<|reserved_special_token_176|>',
'<|reserved_special_token_177|>',
'<|reserved_special_token_178|>',
'<|reserved_special_token_179|>',
'<|reserved_special_token_180|>',
'<|reserved_special_token_181|>',
'<|reserved_special_token_182|>',
'<|reserved_special_token_183|>',
'<|reserved_special_token_184|>',
'<|reserved_special_token_185|>',
'<|reserved_special_token_186|>',
'<|reserved_special_token_187|>',
'<|reserved_special_token_188|>',
'<|reserved_special_token_189|>',
'<|reserved_special_token_190|>',
'<|reserved_special_token_191|>',
'<|reserved_special_token_192|>',
'<|reserved_special_token_193|>',
'<|reserved_special_token_194|>',
'<|reserved_special_token_195|>',
'<|reserved_special_token_196|>',
'<|reserved_special_token_197|>',
'<|reserved_special_token_198|>',
'<|reserved_special_token_199|>',
'<|reserved_special_token_200|>',
'<|reserved_special_token_201|>',
'<|reserved_special_token_202|>',
'<|reserved_special_token_203|>',
'<|reserved_special_token_204|>',
'<|reserved_special_token_205|>',
'<|reserved_special_token_206|>',
'<|reserved_special_token_207|>',
'<|reserved_special_token_208|>',
'<|reserved_special_token_209|>',
'<|reserved_special_token_210|>',
'<|reserved_special_token_211|>',
'<|reserved_special_token_212|>',
'<|reserved_special_token_213|>',
'<|reserved_special_token_214|>',
'<|reserved_special_token_215|>',
'<|reserved_special_token_216|>',
'<|reserved_special_token_217|>',
'<|reserved_special_token_218|>',
'<|reserved_special_token_219|>',
'<|reserved_special_token_220|>',
'<|reserved_special_token_221|>',
'<|reserved_special_token_222|>',
'<|reserved_special_token_223|>',
'<|reserved_special_token_224|>',
'<|reserved_special_token_225|>',
'<|reserved_special_token_226|>',
'<|reserved_special_token_227|>',
'<|reserved_special_token_228|>',
'<|reserved_special_token_229|>',
'<|reserved_special_token_230|>',
'<|reserved_special_token_231|>',
'<|reserved_special_token_232|>',
'<|reserved_special_token_233|>',
'<|reserved_special_token_234|>',
'<|reserved_special_token_235|>',
'<|reserved_special_token_236|>',
'<|reserved_special_token_237|>',
'<|reserved_special_token_238|>',
'<|reserved_special_token_239|>',
'<|reserved_special_token_240|>',
'<|reserved_special_token_241|>',
'<|reserved_special_token_242|>',
'<|reserved_special_token_243|>',
'<|reserved_special_token_244|>',
'<|reserved_special_token_245|>',
'<|reserved_special_token_246|>',
'<|reserved_special_token_247|>',
'<|reserved_special_token_248|>',
'<|reserved_special_token_249|>',
'<|reserved_special_token_250|>']
</details>
Once these untrained tokens are identified, the average of trained tokens can be calculated by using the sums of embedding values of trained tokens for each feature/column and divided by the number of trained. This is done for both input and output matrices.
Lastly, the problematic token's rows in the 2 embedding matrics are set to the computed mean, thus completing the adjustment.
## Contributors
- [David Xue](https://www.linkedin.com/in/david-xue-uva/), Machine Learning Engineer from [Astronomer](https://astronomer.io)
|