End of training
Browse files
README.md
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- my_csv_dataset3
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: passive_invoices_v4.7_refined
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: my_csv_dataset3
|
21 |
+
type: my_csv_dataset3
|
22 |
+
config: discharge
|
23 |
+
split: test
|
24 |
+
args: discharge
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.8837680590965549
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.9081687491602848
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.895802272802571
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9791788856304985
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# passive_invoices_v4.7_refined
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the my_csv_dataset3 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0915
|
48 |
+
- Precision: 0.8838
|
49 |
+
- Recall: 0.9082
|
50 |
+
- F1: 0.8958
|
51 |
+
- Accuracy: 0.9792
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 1e-05
|
71 |
+
- train_batch_size: 2
|
72 |
+
- eval_batch_size: 2
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- training_steps: 16000
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 1.0499 | 0.27 | 500 | 0.8340 | 0.1650 | 0.0685 | 0.0968 | 0.7864 |
|
83 |
+
| 0.6058 | 0.53 | 1000 | 0.5578 | 0.3949 | 0.3288 | 0.3588 | 0.8551 |
|
84 |
+
| 0.4061 | 0.8 | 1500 | 0.3891 | 0.5604 | 0.5187 | 0.5388 | 0.8984 |
|
85 |
+
| 0.2779 | 1.07 | 2000 | 0.3063 | 0.6178 | 0.6270 | 0.6223 | 0.9156 |
|
86 |
+
| 0.2234 | 1.33 | 2500 | 0.2566 | 0.6489 | 0.6511 | 0.6500 | 0.9244 |
|
87 |
+
| 0.185 | 1.6 | 3000 | 0.2230 | 0.7019 | 0.7136 | 0.7077 | 0.9381 |
|
88 |
+
| 0.1524 | 1.87 | 3500 | 0.2003 | 0.7038 | 0.7484 | 0.7254 | 0.9433 |
|
89 |
+
| 0.1249 | 2.14 | 4000 | 0.1652 | 0.7548 | 0.7728 | 0.7637 | 0.9546 |
|
90 |
+
| 0.1101 | 2.4 | 4500 | 0.1480 | 0.7760 | 0.7986 | 0.7872 | 0.9589 |
|
91 |
+
| 0.1054 | 2.67 | 5000 | 0.1455 | 0.7852 | 0.8163 | 0.8004 | 0.9601 |
|
92 |
+
| 0.0846 | 2.94 | 5500 | 0.1413 | 0.7828 | 0.8261 | 0.8039 | 0.9610 |
|
93 |
+
| 0.0822 | 3.2 | 6000 | 0.1285 | 0.8133 | 0.8213 | 0.8173 | 0.9649 |
|
94 |
+
| 0.0725 | 3.47 | 6500 | 0.1256 | 0.8112 | 0.8444 | 0.8275 | 0.9670 |
|
95 |
+
| 0.0653 | 3.74 | 7000 | 0.1210 | 0.8178 | 0.8552 | 0.8361 | 0.9673 |
|
96 |
+
| 0.0682 | 4.0 | 7500 | 0.1123 | 0.8347 | 0.8624 | 0.8483 | 0.9703 |
|
97 |
+
| 0.0562 | 4.27 | 8000 | 0.1084 | 0.8439 | 0.8635 | 0.8536 | 0.9723 |
|
98 |
+
| 0.0553 | 4.54 | 8500 | 0.1098 | 0.8323 | 0.8761 | 0.8536 | 0.9710 |
|
99 |
+
| 0.0527 | 4.81 | 9000 | 0.1035 | 0.8408 | 0.8819 | 0.8609 | 0.9732 |
|
100 |
+
| 0.0446 | 5.07 | 9500 | 0.1037 | 0.8594 | 0.8839 | 0.8715 | 0.9747 |
|
101 |
+
| 0.047 | 5.34 | 10000 | 0.1080 | 0.8631 | 0.8825 | 0.8727 | 0.9731 |
|
102 |
+
| 0.0402 | 5.61 | 10500 | 0.0955 | 0.8696 | 0.8871 | 0.8783 | 0.9768 |
|
103 |
+
| 0.0428 | 5.87 | 11000 | 0.0948 | 0.8685 | 0.8957 | 0.8819 | 0.9765 |
|
104 |
+
| 0.0422 | 6.14 | 11500 | 0.0992 | 0.8724 | 0.8957 | 0.8839 | 0.9762 |
|
105 |
+
| 0.0365 | 6.41 | 12000 | 0.0951 | 0.8731 | 0.9032 | 0.8879 | 0.9777 |
|
106 |
+
| 0.0351 | 6.67 | 12500 | 0.0930 | 0.8818 | 0.9018 | 0.8917 | 0.9786 |
|
107 |
+
| 0.0353 | 6.94 | 13000 | 0.0973 | 0.8654 | 0.9010 | 0.8828 | 0.9765 |
|
108 |
+
| 0.0304 | 7.21 | 13500 | 0.0946 | 0.8795 | 0.9053 | 0.8923 | 0.9784 |
|
109 |
+
| 0.0324 | 7.47 | 14000 | 0.0954 | 0.8805 | 0.9048 | 0.8925 | 0.9782 |
|
110 |
+
| 0.0327 | 7.74 | 14500 | 0.0920 | 0.8825 | 0.9048 | 0.8935 | 0.9786 |
|
111 |
+
| 0.0293 | 8.01 | 15000 | 0.0916 | 0.8810 | 0.9068 | 0.8937 | 0.9789 |
|
112 |
+
| 0.0259 | 8.28 | 15500 | 0.0921 | 0.8823 | 0.9062 | 0.8941 | 0.9790 |
|
113 |
+
| 0.0337 | 8.54 | 16000 | 0.0915 | 0.8838 | 0.9082 | 0.8958 | 0.9792 |
|
114 |
+
|
115 |
+
|
116 |
+
### Framework versions
|
117 |
+
|
118 |
+
- Transformers 4.39.3
|
119 |
+
- Pytorch 2.1.0+cu121
|
120 |
+
- Datasets 2.18.0
|
121 |
+
- Tokenizers 0.15.2
|