atatavana commited on
Commit
bab5507
·
verified ·
1 Parent(s): f982be3

End of training

Browse files
Files changed (1) hide show
  1. README.md +121 -0
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - my_csv_dataset3
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: passive_invoices_v4.7_refined
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: my_csv_dataset3
21
+ type: my_csv_dataset3
22
+ config: discharge
23
+ split: test
24
+ args: discharge
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8837680590965549
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9081687491602848
32
+ - name: F1
33
+ type: f1
34
+ value: 0.895802272802571
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9791788856304985
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # passive_invoices_v4.7_refined
44
+
45
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the my_csv_dataset3 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0915
48
+ - Precision: 0.8838
49
+ - Recall: 0.9082
50
+ - F1: 0.8958
51
+ - Accuracy: 0.9792
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 1e-05
71
+ - train_batch_size: 2
72
+ - eval_batch_size: 2
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - training_steps: 16000
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 1.0499 | 0.27 | 500 | 0.8340 | 0.1650 | 0.0685 | 0.0968 | 0.7864 |
83
+ | 0.6058 | 0.53 | 1000 | 0.5578 | 0.3949 | 0.3288 | 0.3588 | 0.8551 |
84
+ | 0.4061 | 0.8 | 1500 | 0.3891 | 0.5604 | 0.5187 | 0.5388 | 0.8984 |
85
+ | 0.2779 | 1.07 | 2000 | 0.3063 | 0.6178 | 0.6270 | 0.6223 | 0.9156 |
86
+ | 0.2234 | 1.33 | 2500 | 0.2566 | 0.6489 | 0.6511 | 0.6500 | 0.9244 |
87
+ | 0.185 | 1.6 | 3000 | 0.2230 | 0.7019 | 0.7136 | 0.7077 | 0.9381 |
88
+ | 0.1524 | 1.87 | 3500 | 0.2003 | 0.7038 | 0.7484 | 0.7254 | 0.9433 |
89
+ | 0.1249 | 2.14 | 4000 | 0.1652 | 0.7548 | 0.7728 | 0.7637 | 0.9546 |
90
+ | 0.1101 | 2.4 | 4500 | 0.1480 | 0.7760 | 0.7986 | 0.7872 | 0.9589 |
91
+ | 0.1054 | 2.67 | 5000 | 0.1455 | 0.7852 | 0.8163 | 0.8004 | 0.9601 |
92
+ | 0.0846 | 2.94 | 5500 | 0.1413 | 0.7828 | 0.8261 | 0.8039 | 0.9610 |
93
+ | 0.0822 | 3.2 | 6000 | 0.1285 | 0.8133 | 0.8213 | 0.8173 | 0.9649 |
94
+ | 0.0725 | 3.47 | 6500 | 0.1256 | 0.8112 | 0.8444 | 0.8275 | 0.9670 |
95
+ | 0.0653 | 3.74 | 7000 | 0.1210 | 0.8178 | 0.8552 | 0.8361 | 0.9673 |
96
+ | 0.0682 | 4.0 | 7500 | 0.1123 | 0.8347 | 0.8624 | 0.8483 | 0.9703 |
97
+ | 0.0562 | 4.27 | 8000 | 0.1084 | 0.8439 | 0.8635 | 0.8536 | 0.9723 |
98
+ | 0.0553 | 4.54 | 8500 | 0.1098 | 0.8323 | 0.8761 | 0.8536 | 0.9710 |
99
+ | 0.0527 | 4.81 | 9000 | 0.1035 | 0.8408 | 0.8819 | 0.8609 | 0.9732 |
100
+ | 0.0446 | 5.07 | 9500 | 0.1037 | 0.8594 | 0.8839 | 0.8715 | 0.9747 |
101
+ | 0.047 | 5.34 | 10000 | 0.1080 | 0.8631 | 0.8825 | 0.8727 | 0.9731 |
102
+ | 0.0402 | 5.61 | 10500 | 0.0955 | 0.8696 | 0.8871 | 0.8783 | 0.9768 |
103
+ | 0.0428 | 5.87 | 11000 | 0.0948 | 0.8685 | 0.8957 | 0.8819 | 0.9765 |
104
+ | 0.0422 | 6.14 | 11500 | 0.0992 | 0.8724 | 0.8957 | 0.8839 | 0.9762 |
105
+ | 0.0365 | 6.41 | 12000 | 0.0951 | 0.8731 | 0.9032 | 0.8879 | 0.9777 |
106
+ | 0.0351 | 6.67 | 12500 | 0.0930 | 0.8818 | 0.9018 | 0.8917 | 0.9786 |
107
+ | 0.0353 | 6.94 | 13000 | 0.0973 | 0.8654 | 0.9010 | 0.8828 | 0.9765 |
108
+ | 0.0304 | 7.21 | 13500 | 0.0946 | 0.8795 | 0.9053 | 0.8923 | 0.9784 |
109
+ | 0.0324 | 7.47 | 14000 | 0.0954 | 0.8805 | 0.9048 | 0.8925 | 0.9782 |
110
+ | 0.0327 | 7.74 | 14500 | 0.0920 | 0.8825 | 0.9048 | 0.8935 | 0.9786 |
111
+ | 0.0293 | 8.01 | 15000 | 0.0916 | 0.8810 | 0.9068 | 0.8937 | 0.9789 |
112
+ | 0.0259 | 8.28 | 15500 | 0.0921 | 0.8823 | 0.9062 | 0.8941 | 0.9790 |
113
+ | 0.0337 | 8.54 | 16000 | 0.0915 | 0.8838 | 0.9082 | 0.8958 | 0.9792 |
114
+
115
+
116
+ ### Framework versions
117
+
118
+ - Transformers 4.39.3
119
+ - Pytorch 2.1.0+cu121
120
+ - Datasets 2.18.0
121
+ - Tokenizers 0.15.2