ppo-LunarLander-v2 / config.json
atharv-16's picture
Upload PPO LunarLander-v2 trained agent
313f27e verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b7bc619d120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b7bc619d1b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b7bc619d240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b7bc619d2d0>", "_build": "<function ActorCriticPolicy._build at 0x7b7bc619d360>", "forward": "<function ActorCriticPolicy.forward at 0x7b7bc619d3f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b7bc619d480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b7bc619d510>", "_predict": "<function ActorCriticPolicy._predict at 0x7b7bc619d5a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b7bc619d630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b7bc619d6c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b7bc619d750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b7bc613dd00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728631863099658541, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJqy0bwfDcm5Uy7JukvMubWapIY66JjtOQAAgD8AAIA/ABA6PR/N+bku97e6pkpjNq3k17fsM8o5AACAPwAAgD+LYKi+KwhqP+13kD1ys32+VeMxvpadqj0AAAAAAAAAAOajXT2P8ne6PshoOHGUkjRufSI7w7OFtwAAgD8AAIA/AIqoPXv2o7rQ5tM6gPoBNoFAzDmCy/G5AACAPwAAgD+aspY84cCQurMWeTsVboE4dKPcOnWzerkAAIA/AACAP5pjvjyugYm6edqMufpeprQHU345Ae6iOAAAgD8AAIA/szeZPeEUhbrDhsi6CwTBtV0MkTmDxeQ5AACAPwAAgD9NuxO+WFzYPqwAyD4ZBFO+t24VPRYRrDwAAAAAAAAAAEqpoj66Jjk/Dnp+vjcvjr7HNd09j9I4vQAAAAAAAAAAAJHyPOGkmrraB4w6LRV+Nep6yrmhtKG5AACAPwAAgD8mV6S9yUh0PqhIrj4CIUG+4b3bPSlANj0AAAAAAAAAAM1Rz7yCRrM+fh8oPl0wUb4OK289JetOPQAAAAAAAAAATVMtvbVgpj6WEgg+DFSUvte/gbym1lG6AAAAAAAAAAAz1tO8FPiEulAt4DoRJpS09s5au2d6ALoAAIA/AACAP5uTyb77zJk/4J2NviU+vb6W8Mi+nnG1PQAAAAAAAAAAZlltvVkoiz/gUZ48h3DIviu6J7160xm9AAAAAAAAAAAzttW89lABungcsTmfPCi2KGM3u8v60LgAAIA/AACAP2bOGbtcOzS69RSdOw8vNjjIFn+6FZrXtwAAgD8AAIA/gA3WveEUhbpiRIk5YpbDNHr2sDqflp64AACAPwAAgD+AUzY9jwZeuhLxhDpEoGw1OeAfOjxbnLkAAIA/AACAP01/Rz2PZn+6Ysaqul5d07RUz4W6rivDOQAAgD8AAIA/mkXCu8ejmj6Sf4Q+IEodvu9LEz3+w+Q8AAAAAAAAAAAAANu7BVKAPNElpD4udFG+bg7oPZTkhz0AAAAAAAAAAABCRDwK1yG5KqLtt1fjqLJUVfm69KcMNwAAgD8AAIA/Mxk4PVxrYbo3sae795WLtgWFeLro8wA2AACAPwAAgD8Az689XHswup3CTTiEXOaydak6u7MncbcAAIA/AACAPzP8kbycVXs9/jMUvitDT75844+9d6KHPQAAAAAAAAAATcZCvfaYeboU7RI0u789LcDfdrs6lrWzAACAPwAAgD/Nai09K+7APS5Ud70MHya+4qSHvXVhTj0AAAAAAAAAAGaVNr0AKLg/1y4cvzZ4xT1pUmY8kayavQAAAAAAAAAAmhKrPClAcLpYkr+6vGvmsqYyJLq6Otw5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF/PwPy08eWMAWyUTegDjAF0lEdAlhWZzxPO6nV9lChoBkdAXK1Mvh60IGgHTegDaAhHQJYXIpXp4bF1fZQoaAZHQGQg9a2WpqBoB03oA2gIR0CWGM0NBnjAdX2UKGgGR0BjWiV2Rq46aAdN6ANoCEdAlh49C7btZ3V9lChoBkdAZeeCdz4k/2gHTegDaAhHQJYkLJkoWpJ1fZQoaAZHQGY7DIzWPLhoB03oA2gIR0CWMBIPbwjMdX2UKGgGR0BiZU/bCaZyaAdN6ANoCEdAljI0m2LHdXV9lChoBkdAYCGY6XBxgmgHTegDaAhHQJY2zCYTkAB1fZQoaAZHQGHU8N6PbPBoB03oA2gIR0CWOwmtyPuHdX2UKGgGR0Bkvv+qBEroaAdN6ANoCEdAljtFSn+AE3V9lChoBkdAXy9znzQNTmgHTegDaAhHQJZGjos7MgV1fZQoaAZHQGKSSDqW1MNoB03oA2gIR0CWTNDAJswddX2UKGgGR0Bis/IGQjlgaAdN6ANoCEdAllnEYbbUPXV9lChoBkdAZJX/bTMJQmgHTegDaAhHQJZgb47A+IN1fZQoaAZHQGfeTollbvBoB03oA2gIR0CWZd/9pAUtdX2UKGgGR0BhlcS/TLGJaAdN6ANoCEdAlmcxK6FuenV9lChoBkdAYJXx4ptrK2gHTegDaAhHQJZn+dbxEv11fZQoaAZHQF88YuTRplBoB03oA2gIR0CWamIxQBPsdX2UKGgGR0Bdlg2ZRbbDaAdN6ANoCEdAlmwFyNn5BXV9lChoBkdAYo3+2mYShGgHTegDaAhHQJZuLwDvE0l1fZQoaAZHQGOFgHeJpFloB03oA2gIR0CWcD8wYcebdX2UKGgGR0BiW9sguAZsaAdN6ANoCEdAlnC+xnnMdXV9lChoBkdAcTuVinYQKGgHTfkBaAhHQJZyBjawljV1fZQoaAZHQGTzS9ugpSdoB03oA2gIR0CWdFyaNMoMdX2UKGgGR0Bm3ssJ6Y3OaAdN6ANoCEdAlncHiJfplnV9lChoBkdAYzxXJ5mh/WgHTegDaAhHQJZ3PE2pAD91fZQoaAZHQF9DnA6+36RoB03oA2gIR0CWd7Nb1RLsdX2UKGgGR0Bj7ImE4//vaAdN6ANoCEdAlnfLns9jgHV9lChoBkdAZBRZoPCl8GgHTegDaAhHQJZ6zo6jnFJ1fZQoaAZHQGIGUqpcX3xoB03oA2gIR0CWffQcPvrodX2UKGgGR0Bnb5zijtXxaAdN6ANoCEdAln4NE9dNWXV9lChoBkdAY1ZzasZHeGgHTegDaAhHQJaAJHNHH3l1fZQoaAZHQGWskPDpC8hoB03oA2gIR0CWofxQzk6tdX2UKGgGR0Bk75KDkELZaAdN6ANoCEdAlqIuSwGGEnV9lChoBkdAZ2uZOSGJvmgHTegDaAhHQJajq0OVgQZ1fZQoaAZHQGLVc5jpcHJoB03oA2gIR0CWpVT1kDp1dX2UKGgGR0BkoNB8hLXdaAdN6ANoCEdAlqrBPCVKPHV9lChoBkdAZiv+sHSncmgHTegDaAhHQJawX1QIldF1fZQoaAZHQGPuaUqx1PpoB03oA2gIR0CWuxIPsiSrdX2UKGgGR0BcXFc2R7qqaAdN6ANoCEdAlsAkOd5IH3V9lChoBkdAZYb97WuoxmgHTegDaAhHQJbE0MTewcJ1fZQoaAZHQGRtBQvYe1doB03oA2gIR0CWxQ1TR6WxdX2UKGgGR0BwKxJ04iosaAdNgwJoCEdAls+9WdVebHV9lChoBkdAYl7FYMfA9GgHTegDaAhHQJbT4svqTr51fZQoaAZHQGMLBciW3SdoB03oA2gIR0CW2eD9fkWAdX2UKGgGR0Bgb65byH2zaAdN6ANoCEdAluVw4XGfgHV9lChoBkdAXRNAJLM9sGgHTegDaAhHQJbrGV9nbqR1fZQoaAZHQGMaxNh3JPtoB03oA2gIR0CW7tt5le4TdX2UKGgGR0Bj/y8Djin6aAdN6ANoCEdAlu/KrvLHMnV9lChoBkdAZ4GlpGnXNGgHTegDaAhHQJbwWqyWzGB1fZQoaAZHQF/Vm1YyO7xoB03oA2gIR0CW8mxKg7HRdX2UKGgGR0BiST4WUKRdaAdN6ANoCEdAlvQFT72tdXV9lChoBkdAccDFWGRFJGgHTbABaAhHQJb1e9FnZkF1fZQoaAZHQFnafyPMjeNoB03oA2gIR0CW9inoPkJbdX2UKGgGR0BjBVcry1/laAdN6ANoCEdAlvjC8zyjHnV9lChoBkdAYRjcKw6hg2gHTegDaAhHQJb6kQjD8+B1fZQoaAZHQFzl/zasZHdoB03oA2gIR0CW/dLt/nW8dX2UKGgGR0BhC5Majvd/aAdN6ANoCEdAlwG79qDbrXV9lChoBkdAYrr2OhkAgmgHTegDaAhHQJcCBYkmhM91fZQoaAZHQGLYfdIoVmBoB03oA2gIR0CXAqtG/etTdX2UKGgGR0BoFotDlYEGaAdN6ANoCEdAlwLPG6wt8XV9lChoBkdAXno2VE/jbWgHTegDaAhHQJcGojJMg2Z1fZQoaAZHQGBAwa72+PBoB03oA2gIR0CXChD3/PxAdX2UKGgGR0BjJMN4JNTMaAdN6ANoCEdAlwos6mwaBXV9lChoBkdAZnu03wTdtWgHTegDaAhHQJcMdB+nZTR1fZQoaAZHQGQo44Qz1sdoB03oA2gIR0CXKu15B1LbdX2UKGgGR0Bn73CXQdCFaAdN6ANoCEdAlysdjLB9C3V9lChoBkdAYImU5dWyT2gHTegDaAhHQJcskhje9Bd1fZQoaAZHQGednoPkJa9oB03oA2gIR0CXLsFZgXuWdX2UKGgGR0BmPv5FgDzRaAdN6ANoCEdAlzX6wt8NQXV9lChoBkdAW/iZPVNHpmgHTegDaAhHQJc8nkwN9Yx1fZQoaAZHQGvLcLBsQ/ZoB00KAmgIR0CXRwxSHdoGdX2UKGgGR0Bkc3/T9bX6aAdN6ANoCEdAl0ekJa7mMnV9lChoBkdAbePjp9qk/WgHTVcCaAhHQJdKglv60pp1fZQoaAZHQGLKO2iL2pRoB03oA2gIR0CXUK0BOpKjdX2UKGgGR0BicaQ1aW5ZaAdN6ANoCEdAl1DkytV7yHV9lChoBkdAce0vVmSQo2gHTRUCaAhHQJdTyc4HX3B1fZQoaAZHQGzSUXP7el9oB03QAWgIR0CXVPLcKw6idX2UKGgGR0BhMihg3LmqaAdN6ANoCEdAl1e00BOpKnV9lChoBkdAYdQYGdI5HWgHTegDaAhHQJdbBIczZYh1fZQoaAZHQGY03BYV6/toB03oA2gIR0CXYYajN6gNdX2UKGgGR0BmGMp/gBLgaAdN6ANoCEdAl3AYouwos3V9lChoBkdAZyVPk7wKB2gHTegDaAhHQJd2VeAuqWF1fZQoaAZHQGR1q3NLUTdoB03oA2gIR0CXeok6tDD1dX2UKGgGR0Bm93Bguyu7aAdN6ANoCEdAl3uPjwQUYnV9lChoBkdAXJo+Ofdyk2gHTegDaAhHQJd+gXQ+lj51fZQoaAZHQGQf+36Q/5doB03oA2gIR0CXgEv4M4LkdX2UKGgGR0BmSZ7VrhzeaAdN6ANoCEdAl4LDfrKNhnV9lChoBkdAW6ejsUqQR2gHTegDaAhHQJeFqYMOPNp1fZQoaAZHQGZDvYvnKW9oB03oA2gIR0CXhyRU3n6mdX2UKGgGR0BjvK0ngHeKaAdN6ANoCEdAl4nkrwvxpnV9lChoBkdAbOQEMb3oLWgHTeoCaAhHQJeK/dBSk0t1fZQoaAZHQGVknJT2nKpoB03oA2gIR0CXjN8oQWepdX2UKGgGR0BjbtTWGyooaAdN6ANoCEdAl42uiSJTEXV9lChoBkdAZO6y2x6fJ2gHTegDaAhHQJeNyTTvy9V1fZQoaAZHQGRFzcZccENoB03oA2gIR0CXkRGC7K7qdX2UKGgGR0BhaHMnqmj1aAdN6ANoCEdAl5RuDFqBVnV9lChoBkdATf0HB1s+FGgHS/poCEdAl5bT9n9NvnV9lChoBkdAYuvTZxrBTGgHTegDaAhHQJeXvLX+VC51fZQoaAZHQHEwhfKISDhoB003A2gIR0CXnowY+B6KdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 230, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}