athirdpath commited on
Commit
498386b
1 Parent(s): a76b6f4

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: athirdpath/BigMistral-11b
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: qlora
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ # qlora
16
+
17
+ This model is a fine-tuned version of [athirdpath/BigMistral-11b](https://huggingface.co/athirdpath/BigMistral-11b) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.9174
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0005
39
+ - train_batch_size: 10
40
+ - eval_batch_size: 10
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 40
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine
46
+ - lr_scheduler_warmup_steps: 10
47
+ - num_epochs: 3
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 1.2198 | 0.63 | 30 | 0.9055 |
54
+ | 1.1206 | 1.26 | 60 | 0.8951 |
55
+ | 1.1319 | 1.89 | 90 | 0.8904 |
56
+ | 1.0031 | 2.51 | 120 | 0.9174 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.35.2
62
+ - Pytorch 2.0.1+cu118
63
+ - Datasets 2.15.0
64
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "athirdpath/BigMistral-11b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.08,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 128,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "v_proj",
20
+ "o_proj",
21
+ "k_proj",
22
+ "up_proj",
23
+ "gate_proj",
24
+ "down_proj",
25
+ "q_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faac32173d7ff79402f8cb81c278428bfde4c289fd64cb65093b77cdfebf516c
3
+ size 2013508557
checkpoint-90/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: athirdpath/BigMistral-11b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.0
checkpoint-90/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "athirdpath/BigMistral-11b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.08,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 128,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "v_proj",
20
+ "o_proj",
21
+ "k_proj",
22
+ "up_proj",
23
+ "gate_proj",
24
+ "down_proj",
25
+ "q_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-90/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ef694a26ae83071c8bd7b685675dde7aa5bc7bedb6c5981459b88c69bb12bf5
3
+ size 2013358256
checkpoint-90/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd5135f2c059c6a84bd22bcbf80351cab53e7d40bbb70a4f1f98810fabb99390
3
+ size 1009388319
checkpoint-90/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b78378228d3bc52489494bb304c6e257ed98dd30b693be96e37fa94cf7ebfd09
3
+ size 14575
checkpoint-90/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57ca401d742b6359caca6b42f72565aa22000f42559bea84ee4a59bb9cbba41e
3
+ size 627
checkpoint-90/trainer_state.json ADDED
@@ -0,0 +1,583 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8903650641441345,
3
+ "best_model_checkpoint": "./qlora/checkpoint-90",
4
+ "epoch": 1.8941798941798942,
5
+ "eval_steps": 30,
6
+ "global_step": 90,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "learning_rate": 5e-05,
14
+ "loss": 1.5699,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.04,
19
+ "learning_rate": 0.0001,
20
+ "loss": 1.5336,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.06,
25
+ "learning_rate": 0.00015,
26
+ "loss": 1.4836,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.08,
31
+ "learning_rate": 0.0002,
32
+ "loss": 1.4998,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.11,
37
+ "learning_rate": 0.00025,
38
+ "loss": 1.3778,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.13,
43
+ "learning_rate": 0.0003,
44
+ "loss": 1.4062,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.15,
49
+ "learning_rate": 0.00035,
50
+ "loss": 1.3872,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.17,
55
+ "learning_rate": 0.0004,
56
+ "loss": 1.2851,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.19,
61
+ "learning_rate": 0.00045000000000000004,
62
+ "loss": 1.2633,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.21,
67
+ "learning_rate": 0.0005,
68
+ "loss": 1.3413,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.23,
73
+ "learning_rate": 0.0004999281136632892,
74
+ "loss": 1.295,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.25,
79
+ "learning_rate": 0.0004997124959943201,
80
+ "loss": 1.3508,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.28,
85
+ "learning_rate": 0.0004993532709928075,
86
+ "loss": 1.2912,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.3,
91
+ "learning_rate": 0.0004988506452457066,
92
+ "loss": 1.3399,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.32,
97
+ "learning_rate": 0.0004982049078084071,
98
+ "loss": 1.2839,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.34,
103
+ "learning_rate": 0.0004974164300384998,
104
+ "loss": 1.2581,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.36,
109
+ "learning_rate": 0.0004964856653822122,
110
+ "loss": 1.2758,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.38,
115
+ "learning_rate": 0.0004954131491136361,
116
+ "loss": 1.257,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.4,
121
+ "learning_rate": 0.0004941994980268967,
122
+ "loss": 1.2517,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.42,
127
+ "learning_rate": 0.000492845410081439,
128
+ "loss": 1.2877,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.44,
133
+ "learning_rate": 0.0004913516640006391,
134
+ "loss": 1.2128,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.47,
139
+ "learning_rate": 0.0004897191188239667,
140
+ "loss": 1.2197,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.49,
145
+ "learning_rate": 0.00048794871341296,
146
+ "loss": 1.2126,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.51,
151
+ "learning_rate": 0.00048604146591129483,
152
+ "loss": 1.182,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.53,
157
+ "learning_rate": 0.00048399847315926,
158
+ "loss": 1.2644,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.55,
163
+ "learning_rate": 0.00048182091006297446,
164
+ "loss": 1.2948,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.57,
169
+ "learning_rate": 0.00047951002891870987,
170
+ "loss": 1.2336,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.59,
175
+ "learning_rate": 0.00047706715869270635,
176
+ "loss": 1.2592,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.61,
181
+ "learning_rate": 0.000474493704256897,
182
+ "loss": 1.2353,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.63,
187
+ "learning_rate": 0.0004717911455809782,
188
+ "loss": 1.2198,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.63,
193
+ "eval_loss": 0.9055019021034241,
194
+ "eval_runtime": 78.8597,
195
+ "eval_samples_per_second": 27.974,
196
+ "eval_steps_per_second": 2.802,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.66,
201
+ "learning_rate": 0.0004689610368812938,
202
+ "loss": 1.2092,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.68,
207
+ "learning_rate": 0.0004660050057270191,
208
+ "loss": 1.2702,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.7,
213
+ "learning_rate": 0.0004629247521041611,
214
+ "loss": 1.2143,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.72,
219
+ "learning_rate": 0.0004597220474379125,
220
+ "loss": 1.2066,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.74,
225
+ "learning_rate": 0.0004563987335739216,
226
+ "loss": 1.1781,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.76,
231
+ "learning_rate": 0.00045295672171906365,
232
+ "loss": 1.1901,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.78,
237
+ "learning_rate": 0.00044939799134232397,
238
+ "loss": 1.194,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.8,
243
+ "learning_rate": 0.0004457245890364235,
244
+ "loss": 1.2206,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.83,
249
+ "learning_rate": 0.0004419386273408428,
250
+ "loss": 1.2398,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.85,
255
+ "learning_rate": 0.0004380422835269193,
256
+ "loss": 1.1949,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.87,
261
+ "learning_rate": 0.00043403779834572,
262
+ "loss": 1.1929,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 0.89,
267
+ "learning_rate": 0.00042992747473940553,
268
+ "loss": 1.1823,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 0.91,
273
+ "learning_rate": 0.00042571367651682995,
274
+ "loss": 1.2005,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 0.93,
279
+ "learning_rate": 0.00042139882699413617,
280
+ "loss": 1.1782,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 0.95,
285
+ "learning_rate": 0.00041698540760112926,
286
+ "loss": 1.2222,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 0.97,
291
+ "learning_rate": 0.00041247595645422955,
292
+ "loss": 1.2339,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 0.99,
297
+ "learning_rate": 0.0004078730668968252,
298
+ "loss": 1.1552,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 1.01,
303
+ "learning_rate": 0.00040317938600786487,
304
+ "loss": 1.2564,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 1.03,
309
+ "learning_rate": 0.00039839761307954675,
310
+ "loss": 1.1184,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 1.05,
315
+ "learning_rate": 0.0003935304980649813,
316
+ "loss": 1.0166,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 1.07,
321
+ "learning_rate": 0.0003885808399967186,
322
+ "loss": 1.097,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 1.09,
327
+ "learning_rate": 0.0003835514853770505,
328
+ "loss": 1.1164,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 1.11,
333
+ "learning_rate": 0.00037844532654101405,
334
+ "loss": 1.1085,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 1.13,
339
+ "learning_rate": 0.0003732652999930364,
340
+ "loss": 1.149,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 1.15,
345
+ "learning_rate": 0.00036801438471817827,
346
+ "loss": 1.1033,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 1.17,
351
+ "learning_rate": 0.00036269560046894763,
352
+ "loss": 1.1575,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 1.2,
357
+ "learning_rate": 0.0003573120060286679,
358
+ "loss": 1.0901,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 1.22,
363
+ "learning_rate": 0.00035186669745240024,
364
+ "loss": 1.1321,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 1.24,
369
+ "learning_rate": 0.0003463628062864312,
370
+ "loss": 1.061,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 1.26,
375
+ "learning_rate": 0.00034080349776734924,
376
+ "loss": 1.1206,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 1.26,
381
+ "eval_loss": 0.8950722217559814,
382
+ "eval_runtime": 78.8097,
383
+ "eval_samples_per_second": 27.991,
384
+ "eval_steps_per_second": 2.804,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 1.28,
389
+ "learning_rate": 0.00033519196900174726,
390
+ "loss": 1.0955,
391
+ "step": 61
392
+ },
393
+ {
394
+ "epoch": 1.3,
395
+ "learning_rate": 0.0003295314471275954,
396
+ "loss": 1.0754,
397
+ "step": 62
398
+ },
399
+ {
400
+ "epoch": 1.32,
401
+ "learning_rate": 0.00032382518745834515,
402
+ "loss": 1.1503,
403
+ "step": 63
404
+ },
405
+ {
406
+ "epoch": 1.34,
407
+ "learning_rate": 0.00031807647161082795,
408
+ "loss": 1.1396,
409
+ "step": 64
410
+ },
411
+ {
412
+ "epoch": 1.37,
413
+ "learning_rate": 0.0003122886056180284,
414
+ "loss": 1.1725,
415
+ "step": 65
416
+ },
417
+ {
418
+ "epoch": 1.39,
419
+ "learning_rate": 0.00030646491802781517,
420
+ "loss": 1.0785,
421
+ "step": 66
422
+ },
423
+ {
424
+ "epoch": 1.41,
425
+ "learning_rate": 0.00030060875798872436,
426
+ "loss": 1.1007,
427
+ "step": 67
428
+ },
429
+ {
430
+ "epoch": 1.43,
431
+ "learning_rate": 0.00029472349332389523,
432
+ "loss": 1.0888,
433
+ "step": 68
434
+ },
435
+ {
436
+ "epoch": 1.45,
437
+ "learning_rate": 0.0002888125085942664,
438
+ "loss": 1.1254,
439
+ "step": 69
440
+ },
441
+ {
442
+ "epoch": 1.47,
443
+ "learning_rate": 0.00028287920315214646,
444
+ "loss": 1.1497,
445
+ "step": 70
446
+ },
447
+ {
448
+ "epoch": 1.49,
449
+ "learning_rate": 0.0002769269891862778,
450
+ "loss": 1.1557,
451
+ "step": 71
452
+ },
453
+ {
454
+ "epoch": 1.51,
455
+ "learning_rate": 0.0002709592897595191,
456
+ "loss": 1.0843,
457
+ "step": 72
458
+ },
459
+ {
460
+ "epoch": 1.53,
461
+ "learning_rate": 0.0002649795368402735,
462
+ "loss": 1.0626,
463
+ "step": 73
464
+ },
465
+ {
466
+ "epoch": 1.56,
467
+ "learning_rate": 0.00025899116932879537,
468
+ "loss": 1.0813,
469
+ "step": 74
470
+ },
471
+ {
472
+ "epoch": 1.58,
473
+ "learning_rate": 0.0002529976310795108,
474
+ "loss": 1.1033,
475
+ "step": 75
476
+ },
477
+ {
478
+ "epoch": 1.6,
479
+ "learning_rate": 0.0002470023689204893,
480
+ "loss": 1.0719,
481
+ "step": 76
482
+ },
483
+ {
484
+ "epoch": 1.62,
485
+ "learning_rate": 0.00024100883067120475,
486
+ "loss": 1.1511,
487
+ "step": 77
488
+ },
489
+ {
490
+ "epoch": 1.64,
491
+ "learning_rate": 0.00023502046315972656,
492
+ "loss": 1.1419,
493
+ "step": 78
494
+ },
495
+ {
496
+ "epoch": 1.66,
497
+ "learning_rate": 0.0002290407102404809,
498
+ "loss": 1.1272,
499
+ "step": 79
500
+ },
501
+ {
502
+ "epoch": 1.68,
503
+ "learning_rate": 0.00022307301081372224,
504
+ "loss": 1.1337,
505
+ "step": 80
506
+ },
507
+ {
508
+ "epoch": 1.7,
509
+ "learning_rate": 0.00021712079684785363,
510
+ "loss": 1.1324,
511
+ "step": 81
512
+ },
513
+ {
514
+ "epoch": 1.72,
515
+ "learning_rate": 0.0002111874914057336,
516
+ "loss": 1.0984,
517
+ "step": 82
518
+ },
519
+ {
520
+ "epoch": 1.75,
521
+ "learning_rate": 0.00020527650667610475,
522
+ "loss": 1.124,
523
+ "step": 83
524
+ },
525
+ {
526
+ "epoch": 1.77,
527
+ "learning_rate": 0.0001993912420112756,
528
+ "loss": 1.1362,
529
+ "step": 84
530
+ },
531
+ {
532
+ "epoch": 1.79,
533
+ "learning_rate": 0.00019353508197218492,
534
+ "loss": 1.1449,
535
+ "step": 85
536
+ },
537
+ {
538
+ "epoch": 1.81,
539
+ "learning_rate": 0.00018771139438197168,
540
+ "loss": 1.078,
541
+ "step": 86
542
+ },
543
+ {
544
+ "epoch": 1.83,
545
+ "learning_rate": 0.00018192352838917208,
546
+ "loss": 1.0174,
547
+ "step": 87
548
+ },
549
+ {
550
+ "epoch": 1.85,
551
+ "learning_rate": 0.0001761748125416549,
552
+ "loss": 1.1056,
553
+ "step": 88
554
+ },
555
+ {
556
+ "epoch": 1.87,
557
+ "learning_rate": 0.00017046855287240463,
558
+ "loss": 1.0898,
559
+ "step": 89
560
+ },
561
+ {
562
+ "epoch": 1.89,
563
+ "learning_rate": 0.00016480803099825278,
564
+ "loss": 1.1319,
565
+ "step": 90
566
+ },
567
+ {
568
+ "epoch": 1.89,
569
+ "eval_loss": 0.8903650641441345,
570
+ "eval_runtime": 78.9054,
571
+ "eval_samples_per_second": 27.958,
572
+ "eval_steps_per_second": 2.801,
573
+ "step": 90
574
+ }
575
+ ],
576
+ "logging_steps": 1,
577
+ "max_steps": 141,
578
+ "num_train_epochs": 3,
579
+ "save_steps": 90,
580
+ "total_flos": 9.823903794855936e+17,
581
+ "trial_name": null,
582
+ "trial_params": null
583
+ }
checkpoint-90/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:001bcce44abfd485df0a59bd5b5f2cec68439389dc7e1663c9e7e102d3f1f38d
3
+ size 4539
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "athirdpath/BigMistral-11b",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 14336,
12
+ "max_position_embeddings": 32768,
13
+ "model_type": "mistral",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 48,
16
+ "num_key_value_heads": 8,
17
+ "quantization_config": {
18
+ "bnb_4bit_compute_dtype": "bfloat16",
19
+ "bnb_4bit_quant_type": "nf4",
20
+ "bnb_4bit_use_double_quant": true,
21
+ "llm_int8_enable_fp32_cpu_offload": false,
22
+ "llm_int8_has_fp16_weight": false,
23
+ "llm_int8_skip_modules": null,
24
+ "llm_int8_threshold": 6.0,
25
+ "load_in_4bit": true,
26
+ "load_in_8bit": false,
27
+ "quant_method": "bitsandbytes"
28
+ },
29
+ "rms_norm_eps": 1e-05,
30
+ "rope_theta": 10000.0,
31
+ "sliding_window": 4096,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.35.2",
35
+ "use_cache": false,
36
+ "vocab_size": 32000
37
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "trust_remote_code": false,
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": true,
43
+ "use_fast": true
44
+ }