Upload PPO LunarLander-v2 trained agent
Browse files- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +95 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40880bfe4126e70a639100aed06d67d9b175a6fa9eb72aa1bf163a3bec16bf72
|
3 |
+
size 147424
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f560639b430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f560639b4c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f560639b550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f560639b5e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f560639b670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f560639b700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f560639b790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f560639b820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f560639b8b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f560639b940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f560639b9d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f560639ba60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f5606398210>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673389686165578063,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMq1jw9SiQ4GpwJut/WE7WIWT27eQYkOQAAgD8AAIA/Zh7rPCmoJrraHEC5wLmTsza6d7q6PF84AACAPwAAgD9mkoG8hWvBuf4mrbs35oQ2gSR+O0K/+7UAAIA/AACAPxpWKr2PXhW6bjp0OxsjbTipQb06EAMYugAAgD8AAIA/mjckvCmgZ7ounc25+4ImNcaiYTvacu44AACAPwAAgD+zwwg9XKtsuh67Mju3jhg2ny18un0jTboAAIA/AACAP2amyrzD9Xu6iqiAuyvNTrVW9xW7c0KVOgAAgD8AAIA/JkS6PVJA4rnap0+6TIwCtpq1yLqd8Hk5AACAPwAAAAAaHag94dSLur+EQrtcryC2XMBTu1ixYDoAAIA/AAAAAJphEb09CkM4LzkZuq/RubT5QhW7oC42OQAAgD8AAIA/zd22PHs6n7rtQOG2cQ/csdDia7oVJQM2AACAPwAAgD/NhO68j/IpuoqbPbsVE1O2t3gsuwjXXjoAAIA/AACAP5qRHTyFX7k6GwKxvbOrwb12f4u8v12uPgAAgD8AAAAAM9vHPRTehrorUlS5vY7ctLy4MTtltXE4AACAPwAAgD+aiRM8wxV6ukWL0rorR+61q8yEuzJK9jkAAIA/AACAP8DimT2ucZy6G0HXuQ8Q37UoMyi5Q7X4OAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe2e0VUkDZUCUhpRSlIwBbJRN6AOMAXSUR0CUrvrSVnmJdX2UKGgGaAloD0MIUnx8QvZhYUCUhpRSlGgVTegDaBZHQJTXt9JBgNR1fZQoaAZoCWgPQwgYXd4cLs5jQJSGlFKUaBVN6ANoFkdAlOJ/KU3XI3V9lChoBmgJaA9DCM0hqYUSIWBAlIaUUpRoFU3oA2gWR0CU5Kgv114gdX2UKGgGaAloD0MI/bypSAW9Y0CUhpRSlGgVTegDaBZHQJTm7dCVryl1fZQoaAZoCWgPQwgXZTbIpK9jQJSGlFKUaBVN6ANoFkdAlOfZPykKu3V9lChoBmgJaA9DCPTDCOFRcWFAlIaUUpRoFU3oA2gWR0CU6J7Dl5nldX2UKGgGaAloD0MIr7DgfkALYkCUhpRSlGgVTegDaBZHQJTx0rUb1h91fZQoaAZoCWgPQwhmTMEaZ1RhQJSGlFKUaBVN6ANoFkdAlPJyYgJTl3V9lChoBmgJaA9DCGHGFKxxGV9AlIaUUpRoFU3oA2gWR0CU9pn62v0RdX2UKGgGaAloD0MI/kgRGda/YUCUhpRSlGgVTegDaBZHQJT7D/DLr5Z1fZQoaAZoCWgPQwjekEYFTr1mQJSGlFKUaBVN6ANoFkdAlPzbt/nW8XV9lChoBmgJaA9DCDKqDONu+V5AlIaUUpRoFU3oA2gWR0CVBPRRuTA4dX2UKGgGaAloD0MIOuenOI5JYECUhpRSlGgVTegDaBZHQJUFk7r9l3B1fZQoaAZoCWgPQwgqOLwgIu5kQJSGlFKUaBVN6ANoFkdAlQlImXw9aHV9lChoBmgJaA9DCB2wq8nT9WpAlIaUUpRoFU2eAWgWR0CVDM/T9bX6dX2UKGgGaAloD0MIAptz8EwzZUCUhpRSlGgVTegDaBZHQJUM3kYGdI51fZQoaAZoCWgPQwjWGd8Xl6NfQJSGlFKUaBVN6ANoFkdAlQ2fw7T2FnV9lChoBmgJaA9DCDUHCOZoK2dAlIaUUpRoFU3oA2gWR0CVNDCswL3LdX2UKGgGaAloD0MIavZAK7A9ZkCUhpRSlGgVTegDaBZHQJU9TVCojwB1fZQoaAZoCWgPQwiZnxuaMmplQJSGlFKUaBVN6ANoFkdAlT93jyWiUXV9lChoBmgJaA9DCJvHYTB/Rl5AlIaUUpRoFU3oA2gWR0CVQbp3X7LudX2UKGgGaAloD0MIb7n6scmRYUCUhpRSlGgVTegDaBZHQJVCpA6dUbV1fZQoaAZoCWgPQwihTQ6f9MliQJSGlFKUaBVN6ANoFkdAlUN0tEofCHV9lChoBmgJaA9DCM/26A33SWRAlIaUUpRoFU3oA2gWR0CVTVEHMUypdX2UKGgGaAloD0MI2qm53GD2YkCUhpRSlGgVTegDaBZHQJVSyJk5IYp1fZQoaAZoCWgPQwjRyyiW2/VlQJSGlFKUaBVN6ANoFkdAlVeA2/BWP3V9lChoBmgJaA9DCCzy64dYkmRAlIaUUpRoFU3oA2gWR0CVWb8pkPMCdX2UKGgGaAloD0MIm64nui4LZUCUhpRSlGgVTegDaBZHQJVkbfgrH2h1fZQoaAZoCWgPQwhQ4978hkhhQJSGlFKUaBVN6ANoFkdAlWVGCVbA13V9lChoBmgJaA9DCDxp4bKK62JAlIaUUpRoFU3oA2gWR0CVafteUpuudX2UKGgGaAloD0MIIJp5ck3JXUCUhpRSlGgVTegDaBZHQJVuQ3m3fAN1fZQoaAZoCWgPQwiny2Jic55iQJSGlFKUaBVN6ANoFkdAlW5V+/gzg3V9lChoBmgJaA9DCDiFlQqqUWBAlIaUUpRoFU3oA2gWR0CVbzPepGWldX2UKGgGaAloD0MImBk2yvphYECUhpRSlGgVTegDaBZHQJWAkm1IAfd1fZQoaAZoCWgPQwjZzvdT41phQJSGlFKUaBVN6ANoFkdAlaAtSAH3UXV9lChoBmgJaA9DCOS/QBAg8mNAlIaUUpRoFU3oA2gWR0CVokw++ueSdX2UKGgGaAloD0MILQWk/Q+EZECUhpRSlGgVTegDaBZHQJWka9QGfPJ1fZQoaAZoCWgPQwjAl8KD5phhQJSGlFKUaBVN6ANoFkdAlaVR6a9bo3V9lChoBmgJaA9DCEjdzr7yImZAlIaUUpRoFU3oA2gWR0CVpiLc9GI9dX2UKGgGaAloD0MIDmjpCrYjZUCUhpRSlGgVTegDaBZHQJWvqay8jA11fZQoaAZoCWgPQwhYcD/ggbtiQJSGlFKUaBVN6ANoFkdAlbUH9rGipXV9lChoBmgJaA9DCFSLiGJyZWRAlIaUUpRoFU3oA2gWR0CVubo0ALiNdX2UKGgGaAloD0MIn1VmSmtBZUCUhpRSlGgVTegDaBZHQJW74YwZflZ1fZQoaAZoCWgPQwj8cJAQ5exbQJSGlFKUaBVN6ANoFkdAlcVvci4axXV9lChoBmgJaA9DCI4FhUGZiGFAlIaUUpRoFU3oA2gWR0CVxjk/KQq7dX2UKGgGaAloD0MIQMBatWuMX0CUhpRSlGgVTegDaBZHQJXKxMDfWMF1fZQoaAZoCWgPQwi0BBkBFUViQJSGlFKUaBVN6ANoFkdAlc8fthNM5HV9lChoBmgJaA9DCBqiCn8Gk2FAlIaUUpRoFU3oA2gWR0CVzzI3R5TqdX2UKGgGaAloD0MIvsCsUKRXZ0CUhpRSlGgVTegDaBZHQJXQHaPCEYh1fZQoaAZoCWgPQwhy/bs+cxNdQJSGlFKUaBVN6ANoFkdAleC1XV9WqHV9lChoBmgJaA9DCH5VLlT+LmFAlIaUUpRoFU3oA2gWR0CWAgioKlYVdX2UKGgGaAloD0MIbAVNSyzdZECUhpRSlGgVTegDaBZHQJYD/E1l5GB1fZQoaAZoCWgPQwiCcAUUaiBgQJSGlFKUaBVN6ANoFkdAlgXp+H8CP3V9lChoBmgJaA9DCLr4254g2GJAlIaUUpRoFU3oA2gWR0CWBq9ETg2qdX2UKGgGaAloD0MI2lNyTuy9ZUCUhpRSlGgVTegDaBZHQJYHTdIoVmB1fZQoaAZoCWgPQwiy17s/3nFiQJSGlFKUaBVN6ANoFkdAlg/y7Ciyp3V9lChoBmgJaA9DCAk4hCq1XGNAlIaUUpRoFU3oA2gWR0CWFSSPluFYdX2UKGgGaAloD0MIrMq+KwLIZUCUhpRSlGgVTegDaBZHQJYZgOTaCcx1fZQoaAZoCWgPQwgt7GmHPyBgQJSGlFKUaBVN6ANoFkdAlhuhwQ176nV9lChoBmgJaA9DCGzOwTMhxGFAlIaUUpRoFU3oA2gWR0CWJaxVyWAxdX2UKGgGaAloD0MIJzEIrJzyZkCUhpRSlGgVTegDaBZHQJYmaXZ5AyF1fZQoaAZoCWgPQwgH7kCdcshkQJSGlFKUaBVN6ANoFkdAlisvcnE2pHV9lChoBmgJaA9DCCANp8zNzGNAlIaUUpRoFU3oA2gWR0CWL5VBUrCndX2UKGgGaAloD0MIrYcvE8WFYUCUhpRSlGgVTegDaBZHQJYvpl6JIlN1fZQoaAZoCWgPQwi5GAPrON1kQJSGlFKUaBVN6ANoFkdAljB8E7nxKHV9lChoBmgJaA9DCFzJjo3AcWNAlIaUUpRoFU3oA2gWR0CWQjaisXBQdX2UKGgGaAloD0MIy54ENucVYkCUhpRSlGgVTegDaBZHQJZiWpqASWZ1fZQoaAZoCWgPQwgLR5BKMdFkQJSGlFKUaBVN6ANoFkdAlmRizcAR03V9lChoBmgJaA9DCMVx4NXykWVAlIaUUpRoFU3oA2gWR0CWZrzLwF1TdX2UKGgGaAloD0MIzvv/OOHEYECUhpRSlGgVTegDaBZHQJZno/wAlv91fZQoaAZoCWgPQwjK4ZNOJJheQJSGlFKUaBVN6ANoFkdAlmhzeoDPnnV9lChoBmgJaA9DCJz9gXJbXWFAlIaUUpRoFU3oA2gWR0CWcg3+MqBmdX2UKGgGaAloD0MIH2easH1dZkCUhpRSlGgVTegDaBZHQJZ3QVLzwtt1fZQoaAZoCWgPQwjx2To42EdeQJSGlFKUaBVN6ANoFkdAlnudsvZh8nV9lChoBmgJaA9DCBoWo661jG9AlIaUUpRoFU3BAmgWR0CWfBlyimEXdX2UKGgGaAloD0MIVyHlJ9W1ZUCUhpRSlGgVTegDaBZHQJZ9k9FF2FF1fZQoaAZoCWgPQwg6d7temiBcQJSGlFKUaBVN6ANoFkdAloa67ROUMXV9lChoBmgJaA9DCMCuJk9ZGmZAlIaUUpRoFU3oA2gWR0CWh3KAavRrdX2UKGgGaAloD0MIVyQmqGHyYUCUhpRSlGgVTegDaBZHQJaLrTpgTh51fZQoaAZoCWgPQwjBbti2qIZgQJSGlFKUaBVN6ANoFkdAlpK5Fb3XZ3V9lChoBmgJaA9DCAjNrnsrh2JAlIaUUpRoFU3oA2gWR0CWksmvW6K+dX2UKGgGaAloD0MII2qizwdNcECUhpRSlGgVTSwDaBZHQJaWVi/fwZx1fZQoaAZoCWgPQwiRXz/EBtdgQJSGlFKUaBVN6ANoFkdAltFaJZW7v3V9lChoBmgJaA9DCPLrh9jgBGhAlIaUUpRoFU3oA2gWR0CW1AzPa+N+dX2UKGgGaAloD0MIW5caoR9fY0CUhpRSlGgVTegDaBZHQJbWMtQKrrB1fZQoaAZoCWgPQwhTA83n3FVeQJSGlFKUaBVN6ANoFkdAltccclw97nV9lChoBmgJaA9DCOzf9ZkzP2FAlIaUUpRoFU3oA2gWR0CW1+EfDDTCdX2UKGgGaAloD0MI4ugq3V26ZECUhpRSlGgVTegDaBZHQJbiSCDmKZV1fZQoaAZoCWgPQwiQ+YBAZ6RkQJSGlFKUaBVN6ANoFkdAlue0TcqOLnV9lChoBmgJaA9DCBcQWg9fRV1AlIaUUpRoFU3oA2gWR0CW7Fpo9LYgdX2UKGgGaAloD0MIUfhsHZzaZUCUhpRSlGgVTegDaBZHQJbs3qu8sc11fZQoaAZoCWgPQwgKSzyg7KhmQJSGlFKUaBVN6ANoFkdAlu5jOoo/inV9lChoBmgJaA9DCCcR4V8E5WdAlIaUUpRoFU3oA2gWR0CW+EM4LkS3dX2UKGgGaAloD0MIchk3NdCGZECUhpRSlGgVTegDaBZHQJb4/Wtlqah1fZQoaAZoCWgPQwh9lBEXgE5HQJSGlFKUaBVNFgFoFkdAlvyOEh7mdXV9lChoBmgJaA9DCCUEq+rle2ZAlIaUUpRoFU3oA2gWR0CW/YXBguyvdX2UKGgGaAloD0MIlx+4ypPZYUCUhpRSlGgVTegDaBZHQJcCADV6NVB1fZQoaAZoCWgPQwiE8j6O5hNgQJSGlFKUaBVN6ANoFkdAlwInqiXY2HV9lChoBmgJaA9DCFKY9zjTuWdAlIaUUpRoFU3oA2gWR0CXBf9AX2ugdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:581af86970c3b21afc4e8b82d3aa7a1edb8385352ad70c1b93a647f711c3bc4e
|
3 |
+
size 87929
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:395dd3bc3fcd5c8aa7d3255440079c5b1cc4bc99df70d86d169bb4d4b489e675
|
3 |
+
size 43393
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 242.38 +/- 18.69
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f560639b430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f560639b4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f560639b550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f560639b5e0>", "_build": "<function ActorCriticPolicy._build at 0x7f560639b670>", "forward": "<function ActorCriticPolicy.forward at 0x7f560639b700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f560639b790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f560639b820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f560639b8b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f560639b940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f560639b9d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f560639ba60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5606398210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673389686165578063, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMq1jw9SiQ4GpwJut/WE7WIWT27eQYkOQAAgD8AAIA/Zh7rPCmoJrraHEC5wLmTsza6d7q6PF84AACAPwAAgD9mkoG8hWvBuf4mrbs35oQ2gSR+O0K/+7UAAIA/AACAPxpWKr2PXhW6bjp0OxsjbTipQb06EAMYugAAgD8AAIA/mjckvCmgZ7ounc25+4ImNcaiYTvacu44AACAPwAAgD+zwwg9XKtsuh67Mju3jhg2ny18un0jTboAAIA/AACAP2amyrzD9Xu6iqiAuyvNTrVW9xW7c0KVOgAAgD8AAIA/JkS6PVJA4rnap0+6TIwCtpq1yLqd8Hk5AACAPwAAAAAaHag94dSLur+EQrtcryC2XMBTu1ixYDoAAIA/AAAAAJphEb09CkM4LzkZuq/RubT5QhW7oC42OQAAgD8AAIA/zd22PHs6n7rtQOG2cQ/csdDia7oVJQM2AACAPwAAgD/NhO68j/IpuoqbPbsVE1O2t3gsuwjXXjoAAIA/AACAP5qRHTyFX7k6GwKxvbOrwb12f4u8v12uPgAAgD8AAAAAM9vHPRTehrorUlS5vY7ctLy4MTtltXE4AACAPwAAgD+aiRM8wxV6ukWL0rorR+61q8yEuzJK9jkAAIA/AACAP8DimT2ucZy6G0HXuQ8Q37UoMyi5Q7X4OAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe2e0VUkDZUCUhpRSlIwBbJRN6AOMAXSUR0CUrvrSVnmJdX2UKGgGaAloD0MIUnx8QvZhYUCUhpRSlGgVTegDaBZHQJTXt9JBgNR1fZQoaAZoCWgPQwgYXd4cLs5jQJSGlFKUaBVN6ANoFkdAlOJ/KU3XI3V9lChoBmgJaA9DCM0hqYUSIWBAlIaUUpRoFU3oA2gWR0CU5Kgv114gdX2UKGgGaAloD0MI/bypSAW9Y0CUhpRSlGgVTegDaBZHQJTm7dCVryl1fZQoaAZoCWgPQwgXZTbIpK9jQJSGlFKUaBVN6ANoFkdAlOfZPykKu3V9lChoBmgJaA9DCPTDCOFRcWFAlIaUUpRoFU3oA2gWR0CU6J7Dl5nldX2UKGgGaAloD0MIr7DgfkALYkCUhpRSlGgVTegDaBZHQJTx0rUb1h91fZQoaAZoCWgPQwhmTMEaZ1RhQJSGlFKUaBVN6ANoFkdAlPJyYgJTl3V9lChoBmgJaA9DCGHGFKxxGV9AlIaUUpRoFU3oA2gWR0CU9pn62v0RdX2UKGgGaAloD0MI/kgRGda/YUCUhpRSlGgVTegDaBZHQJT7D/DLr5Z1fZQoaAZoCWgPQwjekEYFTr1mQJSGlFKUaBVN6ANoFkdAlPzbt/nW8XV9lChoBmgJaA9DCDKqDONu+V5AlIaUUpRoFU3oA2gWR0CVBPRRuTA4dX2UKGgGaAloD0MIOuenOI5JYECUhpRSlGgVTegDaBZHQJUFk7r9l3B1fZQoaAZoCWgPQwgqOLwgIu5kQJSGlFKUaBVN6ANoFkdAlQlImXw9aHV9lChoBmgJaA9DCB2wq8nT9WpAlIaUUpRoFU2eAWgWR0CVDM/T9bX6dX2UKGgGaAloD0MIAptz8EwzZUCUhpRSlGgVTegDaBZHQJUM3kYGdI51fZQoaAZoCWgPQwjWGd8Xl6NfQJSGlFKUaBVN6ANoFkdAlQ2fw7T2FnV9lChoBmgJaA9DCDUHCOZoK2dAlIaUUpRoFU3oA2gWR0CVNDCswL3LdX2UKGgGaAloD0MIavZAK7A9ZkCUhpRSlGgVTegDaBZHQJU9TVCojwB1fZQoaAZoCWgPQwiZnxuaMmplQJSGlFKUaBVN6ANoFkdAlT93jyWiUXV9lChoBmgJaA9DCJvHYTB/Rl5AlIaUUpRoFU3oA2gWR0CVQbp3X7LudX2UKGgGaAloD0MIb7n6scmRYUCUhpRSlGgVTegDaBZHQJVCpA6dUbV1fZQoaAZoCWgPQwihTQ6f9MliQJSGlFKUaBVN6ANoFkdAlUN0tEofCHV9lChoBmgJaA9DCM/26A33SWRAlIaUUpRoFU3oA2gWR0CVTVEHMUypdX2UKGgGaAloD0MI2qm53GD2YkCUhpRSlGgVTegDaBZHQJVSyJk5IYp1fZQoaAZoCWgPQwjRyyiW2/VlQJSGlFKUaBVN6ANoFkdAlVeA2/BWP3V9lChoBmgJaA9DCCzy64dYkmRAlIaUUpRoFU3oA2gWR0CVWb8pkPMCdX2UKGgGaAloD0MIm64nui4LZUCUhpRSlGgVTegDaBZHQJVkbfgrH2h1fZQoaAZoCWgPQwhQ4978hkhhQJSGlFKUaBVN6ANoFkdAlWVGCVbA13V9lChoBmgJaA9DCDxp4bKK62JAlIaUUpRoFU3oA2gWR0CVafteUpuudX2UKGgGaAloD0MIIJp5ck3JXUCUhpRSlGgVTegDaBZHQJVuQ3m3fAN1fZQoaAZoCWgPQwiny2Jic55iQJSGlFKUaBVN6ANoFkdAlW5V+/gzg3V9lChoBmgJaA9DCDiFlQqqUWBAlIaUUpRoFU3oA2gWR0CVbzPepGWldX2UKGgGaAloD0MImBk2yvphYECUhpRSlGgVTegDaBZHQJWAkm1IAfd1fZQoaAZoCWgPQwjZzvdT41phQJSGlFKUaBVN6ANoFkdAlaAtSAH3UXV9lChoBmgJaA9DCOS/QBAg8mNAlIaUUpRoFU3oA2gWR0CVokw++ueSdX2UKGgGaAloD0MILQWk/Q+EZECUhpRSlGgVTegDaBZHQJWka9QGfPJ1fZQoaAZoCWgPQwjAl8KD5phhQJSGlFKUaBVN6ANoFkdAlaVR6a9bo3V9lChoBmgJaA9DCEjdzr7yImZAlIaUUpRoFU3oA2gWR0CVpiLc9GI9dX2UKGgGaAloD0MIDmjpCrYjZUCUhpRSlGgVTegDaBZHQJWvqay8jA11fZQoaAZoCWgPQwhYcD/ggbtiQJSGlFKUaBVN6ANoFkdAlbUH9rGipXV9lChoBmgJaA9DCFSLiGJyZWRAlIaUUpRoFU3oA2gWR0CVubo0ALiNdX2UKGgGaAloD0MIn1VmSmtBZUCUhpRSlGgVTegDaBZHQJW74YwZflZ1fZQoaAZoCWgPQwj8cJAQ5exbQJSGlFKUaBVN6ANoFkdAlcVvci4axXV9lChoBmgJaA9DCI4FhUGZiGFAlIaUUpRoFU3oA2gWR0CVxjk/KQq7dX2UKGgGaAloD0MIQMBatWuMX0CUhpRSlGgVTegDaBZHQJXKxMDfWMF1fZQoaAZoCWgPQwi0BBkBFUViQJSGlFKUaBVN6ANoFkdAlc8fthNM5HV9lChoBmgJaA9DCBqiCn8Gk2FAlIaUUpRoFU3oA2gWR0CVzzI3R5TqdX2UKGgGaAloD0MIvsCsUKRXZ0CUhpRSlGgVTegDaBZHQJXQHaPCEYh1fZQoaAZoCWgPQwhy/bs+cxNdQJSGlFKUaBVN6ANoFkdAleC1XV9WqHV9lChoBmgJaA9DCH5VLlT+LmFAlIaUUpRoFU3oA2gWR0CWAgioKlYVdX2UKGgGaAloD0MIbAVNSyzdZECUhpRSlGgVTegDaBZHQJYD/E1l5GB1fZQoaAZoCWgPQwiCcAUUaiBgQJSGlFKUaBVN6ANoFkdAlgXp+H8CP3V9lChoBmgJaA9DCLr4254g2GJAlIaUUpRoFU3oA2gWR0CWBq9ETg2qdX2UKGgGaAloD0MI2lNyTuy9ZUCUhpRSlGgVTegDaBZHQJYHTdIoVmB1fZQoaAZoCWgPQwiy17s/3nFiQJSGlFKUaBVN6ANoFkdAlg/y7Ciyp3V9lChoBmgJaA9DCAk4hCq1XGNAlIaUUpRoFU3oA2gWR0CWFSSPluFYdX2UKGgGaAloD0MIrMq+KwLIZUCUhpRSlGgVTegDaBZHQJYZgOTaCcx1fZQoaAZoCWgPQwgt7GmHPyBgQJSGlFKUaBVN6ANoFkdAlhuhwQ176nV9lChoBmgJaA9DCGzOwTMhxGFAlIaUUpRoFU3oA2gWR0CWJaxVyWAxdX2UKGgGaAloD0MIJzEIrJzyZkCUhpRSlGgVTegDaBZHQJYmaXZ5AyF1fZQoaAZoCWgPQwgH7kCdcshkQJSGlFKUaBVN6ANoFkdAlisvcnE2pHV9lChoBmgJaA9DCCANp8zNzGNAlIaUUpRoFU3oA2gWR0CWL5VBUrCndX2UKGgGaAloD0MIrYcvE8WFYUCUhpRSlGgVTegDaBZHQJYvpl6JIlN1fZQoaAZoCWgPQwi5GAPrON1kQJSGlFKUaBVN6ANoFkdAljB8E7nxKHV9lChoBmgJaA9DCFzJjo3AcWNAlIaUUpRoFU3oA2gWR0CWQjaisXBQdX2UKGgGaAloD0MIy54ENucVYkCUhpRSlGgVTegDaBZHQJZiWpqASWZ1fZQoaAZoCWgPQwgLR5BKMdFkQJSGlFKUaBVN6ANoFkdAlmRizcAR03V9lChoBmgJaA9DCMVx4NXykWVAlIaUUpRoFU3oA2gWR0CWZrzLwF1TdX2UKGgGaAloD0MIzvv/OOHEYECUhpRSlGgVTegDaBZHQJZno/wAlv91fZQoaAZoCWgPQwjK4ZNOJJheQJSGlFKUaBVN6ANoFkdAlmhzeoDPnnV9lChoBmgJaA9DCJz9gXJbXWFAlIaUUpRoFU3oA2gWR0CWcg3+MqBmdX2UKGgGaAloD0MIH2easH1dZkCUhpRSlGgVTegDaBZHQJZ3QVLzwtt1fZQoaAZoCWgPQwjx2To42EdeQJSGlFKUaBVN6ANoFkdAlnudsvZh8nV9lChoBmgJaA9DCBoWo661jG9AlIaUUpRoFU3BAmgWR0CWfBlyimEXdX2UKGgGaAloD0MIVyHlJ9W1ZUCUhpRSlGgVTegDaBZHQJZ9k9FF2FF1fZQoaAZoCWgPQwg6d7temiBcQJSGlFKUaBVN6ANoFkdAloa67ROUMXV9lChoBmgJaA9DCMCuJk9ZGmZAlIaUUpRoFU3oA2gWR0CWh3KAavRrdX2UKGgGaAloD0MIVyQmqGHyYUCUhpRSlGgVTegDaBZHQJaLrTpgTh51fZQoaAZoCWgPQwjBbti2qIZgQJSGlFKUaBVN6ANoFkdAlpK5Fb3XZ3V9lChoBmgJaA9DCAjNrnsrh2JAlIaUUpRoFU3oA2gWR0CWksmvW6K+dX2UKGgGaAloD0MII2qizwdNcECUhpRSlGgVTSwDaBZHQJaWVi/fwZx1fZQoaAZoCWgPQwiRXz/EBtdgQJSGlFKUaBVN6ANoFkdAltFaJZW7v3V9lChoBmgJaA9DCPLrh9jgBGhAlIaUUpRoFU3oA2gWR0CW1AzPa+N+dX2UKGgGaAloD0MIW5caoR9fY0CUhpRSlGgVTegDaBZHQJbWMtQKrrB1fZQoaAZoCWgPQwhTA83n3FVeQJSGlFKUaBVN6ANoFkdAltccclw97nV9lChoBmgJaA9DCOzf9ZkzP2FAlIaUUpRoFU3oA2gWR0CW1+EfDDTCdX2UKGgGaAloD0MI4ugq3V26ZECUhpRSlGgVTegDaBZHQJbiSCDmKZV1fZQoaAZoCWgPQwiQ+YBAZ6RkQJSGlFKUaBVN6ANoFkdAlue0TcqOLnV9lChoBmgJaA9DCBcQWg9fRV1AlIaUUpRoFU3oA2gWR0CW7Fpo9LYgdX2UKGgGaAloD0MIUfhsHZzaZUCUhpRSlGgVTegDaBZHQJbs3qu8sc11fZQoaAZoCWgPQwgKSzyg7KhmQJSGlFKUaBVN6ANoFkdAlu5jOoo/inV9lChoBmgJaA9DCCcR4V8E5WdAlIaUUpRoFU3oA2gWR0CW+EM4LkS3dX2UKGgGaAloD0MIchk3NdCGZECUhpRSlGgVTegDaBZHQJb4/Wtlqah1fZQoaAZoCWgPQwh9lBEXgE5HQJSGlFKUaBVNFgFoFkdAlvyOEh7mdXV9lChoBmgJaA9DCCUEq+rle2ZAlIaUUpRoFU3oA2gWR0CW/YXBguyvdX2UKGgGaAloD0MIlx+4ypPZYUCUhpRSlGgVTegDaBZHQJcCADV6NVB1fZQoaAZoCWgPQwiE8j6O5hNgQJSGlFKUaBVN6ANoFkdAlwInqiXY2HV9lChoBmgJaA9DCFKY9zjTuWdAlIaUUpRoFU3oA2gWR0CXBf9AX2ugdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (246 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 242.37829253384152, "std_reward": 18.688421753583796, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T22:52:35.971962"}
|