--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - atulksingh/mypin-voice-dataset metrics: - wer model-index: - name: Whisper Base myPin results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Domain Based voice type: atulksingh/mypin-voice-dataset config: default split: None args: 'split: test' metrics: - name: Wer type: wer value: 34.523809523809526 --- # Whisper Base myPin This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Domain Based voice dataset. It achieves the following results on the evaluation set: - Loss: 0.0769 - Wer: 34.5238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-------:| | 0.2114 | 36.3636 | 500 | 0.2534 | 100.0 | | 0.0186 | 72.7273 | 1000 | 0.0846 | 36.3095 | | 0.0067 | 109.0909 | 1500 | 0.0769 | 34.5238 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3