File size: 3,138 Bytes
ef99749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from infer_pack.models_onnx_moess import SynthesizerTrnMs256NSFsidM
from infer_pack.models_onnx import SynthesizerTrnMs256NSFsidO
import torch

if __name__ == "__main__":
    MoeVS = True  # 模型是否为MoeVoiceStudio(原MoeSS)使用

    ModelPath = "Shiroha/shiroha.pth"  # 模型路径
    ExportedPath = "model.onnx"  # 输出路径
    hidden_channels = 256  # hidden_channels,为768Vec做准备
    cpt = torch.load(ModelPath, map_location="cpu")
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    print(*cpt["config"])

    test_phone = torch.rand(1, 200, hidden_channels)  # hidden unit
    test_phone_lengths = torch.tensor([200]).long()  # hidden unit 长度(貌似没啥用)
    test_pitch = torch.randint(size=(1, 200), low=5, high=255)  # 基频(单位赫兹)
    test_pitchf = torch.rand(1, 200)  # nsf基频
    test_ds = torch.LongTensor([0])  # 说话人ID
    test_rnd = torch.rand(1, 192, 200)  # 噪声(加入随机因子)

    device = "cpu"  # 导出时设备(不影响使用模型)

    if MoeVS:
        net_g = SynthesizerTrnMs256NSFsidM(
            *cpt["config"], is_half=False
        )  # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
        net_g.load_state_dict(cpt["weight"], strict=False)
        input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
        output_names = [
            "audio",
        ]
        torch.onnx.export(
            net_g,
            (
                test_phone.to(device),
                test_phone_lengths.to(device),
                test_pitch.to(device),
                test_pitchf.to(device),
                test_ds.to(device),
                test_rnd.to(device),
            ),
            ExportedPath,
            dynamic_axes={
                "phone": [1],
                "pitch": [1],
                "pitchf": [1],
                "rnd": [2],
            },
            do_constant_folding=False,
            opset_version=16,
            verbose=False,
            input_names=input_names,
            output_names=output_names,
        )
    else:
        net_g = SynthesizerTrnMs256NSFsidO(
            *cpt["config"], is_half=False
        )  # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
        net_g.load_state_dict(cpt["weight"], strict=False)
        input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds"]
        output_names = [
            "audio",
        ]
        torch.onnx.export(
            net_g,
            (
                test_phone.to(device),
                test_phone_lengths.to(device),
                test_pitch.to(device),
                test_pitchf.to(device),
                test_ds.to(device),
            ),
            ExportedPath,
            dynamic_axes={
                "phone": [1],
                "pitch": [1],
                "pitchf": [1],
            },
            do_constant_folding=False,
            opset_version=16,
            verbose=False,
            input_names=input_names,
            output_names=output_names,
        )