|
import torch, traceback, os, pdb |
|
from collections import OrderedDict |
|
|
|
|
|
def savee(ckpt, sr, if_f0, name, epoch): |
|
try: |
|
opt = OrderedDict() |
|
opt["weight"] = {} |
|
for key in ckpt.keys(): |
|
if "enc_q" in key: |
|
continue |
|
opt["weight"][key] = ckpt[key].half() |
|
if sr == "40k": |
|
opt["config"] = [ |
|
1025, |
|
32, |
|
192, |
|
192, |
|
768, |
|
2, |
|
6, |
|
3, |
|
0, |
|
"1", |
|
[3, 7, 11], |
|
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], |
|
[10, 10, 2, 2], |
|
512, |
|
[16, 16, 4, 4], |
|
109, |
|
256, |
|
40000, |
|
] |
|
elif sr == "48k": |
|
opt["config"] = [ |
|
1025, |
|
32, |
|
192, |
|
192, |
|
768, |
|
2, |
|
6, |
|
3, |
|
0, |
|
"1", |
|
[3, 7, 11], |
|
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], |
|
[10, 6, 2, 2, 2], |
|
512, |
|
[16, 16, 4, 4, 4], |
|
109, |
|
256, |
|
48000, |
|
] |
|
elif sr == "32k": |
|
opt["config"] = [ |
|
513, |
|
32, |
|
192, |
|
192, |
|
768, |
|
2, |
|
6, |
|
3, |
|
0, |
|
"1", |
|
[3, 7, 11], |
|
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], |
|
[10, 4, 2, 2, 2], |
|
512, |
|
[16, 16, 4, 4, 4], |
|
109, |
|
256, |
|
32000, |
|
] |
|
opt["info"] = "%sepoch" % epoch |
|
opt["sr"] = sr |
|
opt["f0"] = if_f0 |
|
torch.save(opt, "weights/%s.pth" % name) |
|
return "Success." |
|
except: |
|
return traceback.format_exc() |
|
|
|
|
|
def show_info(path): |
|
try: |
|
a = torch.load(path, map_location="cpu") |
|
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s" % ( |
|
a.get("info", "None"), |
|
a.get("sr", "None"), |
|
a.get("f0", "None"), |
|
) |
|
except: |
|
return traceback.format_exc() |
|
|
|
|
|
def extract_small_model(path, name, sr, if_f0, info): |
|
try: |
|
ckpt = torch.load(path, map_location="cpu") |
|
if "model" in ckpt: |
|
ckpt = ckpt["model"] |
|
opt = OrderedDict() |
|
opt["weight"] = {} |
|
for key in ckpt.keys(): |
|
if "enc_q" in key: |
|
continue |
|
opt["weight"][key] = ckpt[key].half() |
|
if sr == "40k": |
|
opt["config"] = [ |
|
1025, |
|
32, |
|
192, |
|
192, |
|
768, |
|
2, |
|
6, |
|
3, |
|
0, |
|
"1", |
|
[3, 7, 11], |
|
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], |
|
[10, 10, 2, 2], |
|
512, |
|
[16, 16, 4, 4], |
|
109, |
|
256, |
|
40000, |
|
] |
|
elif sr == "48k": |
|
opt["config"] = [ |
|
1025, |
|
32, |
|
192, |
|
192, |
|
768, |
|
2, |
|
6, |
|
3, |
|
0, |
|
"1", |
|
[3, 7, 11], |
|
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], |
|
[10, 6, 2, 2, 2], |
|
512, |
|
[16, 16, 4, 4, 4], |
|
109, |
|
256, |
|
48000, |
|
] |
|
elif sr == "32k": |
|
opt["config"] = [ |
|
513, |
|
32, |
|
192, |
|
192, |
|
768, |
|
2, |
|
6, |
|
3, |
|
0, |
|
"1", |
|
[3, 7, 11], |
|
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], |
|
[10, 4, 2, 2, 2], |
|
512, |
|
[16, 16, 4, 4, 4], |
|
109, |
|
256, |
|
32000, |
|
] |
|
if info == "": |
|
info = "Extracted model." |
|
opt["info"] = info |
|
opt["sr"] = sr |
|
opt["f0"] = int(if_f0) |
|
torch.save(opt, "weights/%s.pth" % name) |
|
return "Success." |
|
except: |
|
return traceback.format_exc() |
|
|
|
|
|
def change_info(path, info, name): |
|
try: |
|
ckpt = torch.load(path, map_location="cpu") |
|
ckpt["info"] = info |
|
if name == "": |
|
name = os.path.basename(path) |
|
torch.save(ckpt, "weights/%s" % name) |
|
return "Success." |
|
except: |
|
return traceback.format_exc() |
|
|
|
|
|
def merge(path1, path2, alpha1, sr, f0, info, name): |
|
try: |
|
|
|
def extract(ckpt): |
|
a = ckpt["model"] |
|
opt = OrderedDict() |
|
opt["weight"] = {} |
|
for key in a.keys(): |
|
if "enc_q" in key: |
|
continue |
|
opt["weight"][key] = a[key] |
|
return opt |
|
|
|
ckpt1 = torch.load(path1, map_location="cpu") |
|
ckpt2 = torch.load(path2, map_location="cpu") |
|
cfg = ckpt1["config"] |
|
if "model" in ckpt1: |
|
ckpt1 = extract(ckpt1) |
|
else: |
|
ckpt1 = ckpt1["weight"] |
|
if "model" in ckpt2: |
|
ckpt2 = extract(ckpt2) |
|
else: |
|
ckpt2 = ckpt2["weight"] |
|
if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())): |
|
return "Fail to merge the models. The model architectures are not the same." |
|
opt = OrderedDict() |
|
opt["weight"] = {} |
|
for key in ckpt1.keys(): |
|
|
|
if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape: |
|
min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0]) |
|
opt["weight"][key] = ( |
|
alpha1 * (ckpt1[key][:min_shape0].float()) |
|
+ (1 - alpha1) * (ckpt2[key][:min_shape0].float()) |
|
).half() |
|
else: |
|
opt["weight"][key] = ( |
|
alpha1 * (ckpt1[key].float()) + (1 - alpha1) * (ckpt2[key].float()) |
|
).half() |
|
|
|
|
|
opt["config"] = cfg |
|
""" |
|
if(sr=="40k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 10, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 40000] |
|
elif(sr=="48k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,6,2,2,2], 512, [16, 16, 4, 4], 109, 256, 48000] |
|
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000] |
|
""" |
|
opt["sr"] = sr |
|
opt["f0"] = 1 if f0 == "是" else 0 |
|
opt["info"] = info |
|
torch.save(opt, "weights/%s.pth" % name) |
|
return "Success." |
|
except: |
|
return traceback.format_exc() |
|
|