juanpablomesa
commited on
Commit
·
ab10ce8
1
Parent(s):
dae7ab5
Added timeit loggings
Browse files- handler.py +23 -16
handler.py
CHANGED
@@ -103,51 +103,58 @@ class EndpointHandler:
|
|
103 |
def embed_frames_with_xclip_processing(self, frames):
|
104 |
# Initialize an empty list to store the frame embeddings
|
105 |
|
106 |
-
self.logger.info("Preprocessing frames.")
|
107 |
frame_preprocessed = self.preprocess_frames(frames)
|
108 |
|
109 |
# Pass the preprocessed frame through the model to get the frame embeddings
|
110 |
-
self.logger.info("Getting video features.")
|
111 |
frame_embedding = self.model.get_video_features(**frame_preprocessed)
|
112 |
|
113 |
-
# Stack the list of frame embeddings into a single tensor
|
114 |
-
# self.logger.info("Stacking embeddings into a single tensor.")
|
115 |
-
# tensor = torch.stack(frame_embedding)
|
116 |
-
|
117 |
-
# detach text emb from graph, move to CPU, and convert to numpy array
|
118 |
-
# self.logger.info("Squeezing tensor")
|
119 |
-
# batch_emb = frame_embedding.squeeze(0)
|
120 |
-
|
121 |
# Check the shape of the tensor
|
122 |
-
self.logger.info(f"Shape of the batch_emb tensor: {frame_embedding.shape}")
|
123 |
|
124 |
# Normalize the embeddings if it's a 2D tensor
|
125 |
if frame_embedding.dim() == 2:
|
126 |
-
self.logger.info("Normalizing embeddings")
|
127 |
batch_emb = torch.nn.functional.normalize(frame_embedding, p=2, dim=1)
|
128 |
else:
|
129 |
-
self.logger.info("Skipping normalization due to tensor shape")
|
130 |
batch_emb = frame_embedding.squeeze(0)
|
131 |
|
132 |
-
self.logger.info("Converting into numpy array")
|
133 |
batch_emb = batch_emb.cpu().detach().numpy()
|
134 |
|
135 |
-
self.logger.info("Converting to list")
|
136 |
batch_emb = batch_emb.tolist()
|
137 |
|
138 |
-
self.logger.info("Returning batch_emb list")
|
139 |
return batch_emb
|
140 |
|
141 |
def process_video(self, video_url, video_metadata):
|
142 |
try:
|
143 |
self.logger.info("Downloading video as bytes.")
|
|
|
144 |
video_bytes, video_headers = self.download_video_as_bytes(video_url)
|
|
|
|
|
|
|
|
|
145 |
self.logger.info("Extracting frames.")
|
|
|
146 |
frames = self.extract_evenly_spaced_frames_from_bytes(
|
147 |
video_bytes, num_frames=32
|
148 |
)
|
|
|
|
|
|
|
|
|
149 |
self.logger.info("Embedding frames with Xclip.")
|
|
|
150 |
frame_embeddings = self.embed_frames_with_xclip_processing(frames)
|
|
|
|
|
|
|
|
|
151 |
video_metadata["url"] = video_url
|
152 |
self.logger.info("Returning embeddings and metadata.")
|
153 |
return frame_embeddings, video_metadata
|
|
|
103 |
def embed_frames_with_xclip_processing(self, frames):
|
104 |
# Initialize an empty list to store the frame embeddings
|
105 |
|
106 |
+
#self.logger.info("Preprocessing frames.")
|
107 |
frame_preprocessed = self.preprocess_frames(frames)
|
108 |
|
109 |
# Pass the preprocessed frame through the model to get the frame embeddings
|
110 |
+
#self.logger.info("Getting video features.")
|
111 |
frame_embedding = self.model.get_video_features(**frame_preprocessed)
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
# Check the shape of the tensor
|
114 |
+
#self.logger.info(f"Shape of the batch_emb tensor: {frame_embedding.shape}")
|
115 |
|
116 |
# Normalize the embeddings if it's a 2D tensor
|
117 |
if frame_embedding.dim() == 2:
|
118 |
+
#self.logger.info("Normalizing embeddings")
|
119 |
batch_emb = torch.nn.functional.normalize(frame_embedding, p=2, dim=1)
|
120 |
else:
|
121 |
+
#self.logger.info("Skipping normalization due to tensor shape")
|
122 |
batch_emb = frame_embedding.squeeze(0)
|
123 |
|
124 |
+
#self.logger.info("Converting into numpy array")
|
125 |
batch_emb = batch_emb.cpu().detach().numpy()
|
126 |
|
127 |
+
#self.logger.info("Converting to list")
|
128 |
batch_emb = batch_emb.tolist()
|
129 |
|
130 |
+
#self.logger.info("Returning batch_emb list")
|
131 |
return batch_emb
|
132 |
|
133 |
def process_video(self, video_url, video_metadata):
|
134 |
try:
|
135 |
self.logger.info("Downloading video as bytes.")
|
136 |
+
download_start_time = timeit.default_timer()
|
137 |
video_bytes, video_headers = self.download_video_as_bytes(video_url)
|
138 |
+
download_end_time = timeit.default_timer()
|
139 |
+
self.logger.info(
|
140 |
+
f"Video downloading took {download_end_time - download_start_time} seconds"
|
141 |
+
)
|
142 |
self.logger.info("Extracting frames.")
|
143 |
+
processing_start_time = timeit.default_timer()
|
144 |
frames = self.extract_evenly_spaced_frames_from_bytes(
|
145 |
video_bytes, num_frames=32
|
146 |
)
|
147 |
+
processing_end_time = timeit.default_timer()
|
148 |
+
self.logger.info(
|
149 |
+
f"Extracting video frames took {processing_end_time - processing_start_time} seconds"
|
150 |
+
)
|
151 |
self.logger.info("Embedding frames with Xclip.")
|
152 |
+
embedding_start_time = timeit.default_timer()
|
153 |
frame_embeddings = self.embed_frames_with_xclip_processing(frames)
|
154 |
+
embedding_end_time = timeit.default_timer()
|
155 |
+
self.logger.info(
|
156 |
+
f"Embedding calculation took {embedding_end_time - embedding_start_time} seconds"
|
157 |
+
)
|
158 |
video_metadata["url"] = video_url
|
159 |
self.logger.info("Returning embeddings and metadata.")
|
160 |
return frame_embeddings, video_metadata
|