File size: 10,298 Bytes
89e2d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
"""
https://huggingface.co/tomiwa1a/video-search
"""
from typing import Dict
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
import whisper
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
import pytube
import time
class EndpointHandler():
# load the model
WHISPER_MODEL_NAME = "tiny.en"
SENTENCE_TRANSFORMER_MODEL_NAME = "multi-qa-mpnet-base-dot-v1"
QUESTION_ANSWER_MODEL_NAME = "vblagoje/bart_lfqa"
SUMMARIZER_MODEL_NAME = "philschmid/bart-large-cnn-samsum"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device_number = 0 if torch.cuda.is_available() else -1
def __init__(self, path=""):
device = "cuda" if torch.cuda.is_available() else "cpu"
device_number = 0 if torch.cuda.is_available() else -1
print(f'whisper and question_answer_model will use: {device}')
print(f'whisper and question_answer_model will use device_number: {device_number}')
t0 = time.time()
self.whisper_model = whisper.load_model(self.WHISPER_MODEL_NAME).to(device_number)
t1 = time.time()
total = t1 - t0
print(f'Finished loading whisper_model in {total} seconds')
t0 = time.time()
self.sentence_transformer_model = SentenceTransformer(self.SENTENCE_TRANSFORMER_MODEL_NAME)
t1 = time.time()
total = t1 - t0
print(f'Finished loading sentence_transformer_model in {total} seconds')
t0 = time.time()
self.summarizer = pipeline("summarization", model=self.SUMMARIZER_MODEL_NAME, device=device_number)
t1 = time.time()
total = t1 - t0
print(f'Finished loading summarizer in {total} seconds')
self.question_answer_tokenizer = AutoTokenizer.from_pretrained(self.QUESTION_ANSWER_MODEL_NAME)
t0 = time.time()
self.question_answer_model = AutoModelForSeq2SeqLM.from_pretrained \
(self.QUESTION_ANSWER_MODEL_NAME).to(device_number)
t1 = time.time()
total = t1 - t0
print(f'Finished loading question_answer_model in {total} seconds')
def __call__(self, data: Dict[str, str]) -> Dict:
"""
Args:
data (:obj:):
includes the URL to video for transcription
Return:
A :obj:`dict`:. transcribed dict
"""
# process input
print('data', data)
if "inputs" not in data:
raise Exception(f"data is missing 'inputs' key which EndpointHandler expects. Received: {data}"
f" See: https://huggingface.co/docs/inference-endpoints/guides/custom_handler#2-create-endpointhandler-cp")
video_url = data.pop("video_url", None)
query = data.pop("query", None)
long_form_answer = data.pop("long_form_answer", None)
summarize = data.pop("summarize", False)
encoded_segments = {}
if video_url:
video_with_transcript = self.transcribe_video(video_url)
video_with_transcript['transcript']['transcription_source'] = f"whisper_{self.WHISPER_MODEL_NAME}"
encode_transcript = data.pop("encode_transcript", True)
if encode_transcript:
encoded_segments = self.combine_transcripts(video_with_transcript)
encoded_segments = {
"encoded_segments": self.encode_sentences(encoded_segments)
}
return {
**video_with_transcript,
**encoded_segments
}
elif summarize:
summary = self.summarize_video(data["segments"])
return {"summary": summary}
elif query:
if long_form_answer:
context = data.pop("context", None)
answer = self.generate_answer(query, context)
response = {
"answer": answer
}
return response
else:
query = [{"text": query, "id": ""}] if isinstance(query, str) else query
encoded_segments = self.encode_sentences(query)
response = {
"encoded_segments": encoded_segments
}
return response
else:
return {
"error": "'video_url' or 'query' must be provided"
}
def transcribe_video(self, video_url):
decode_options = {
# Set language to None to support multilingual,
# but it will take longer to process while it detects the language.
# Realized this by running in verbose mode and seeing how much time
# was spent on the decoding language step
"language": "en",
"verbose": True
}
yt = pytube.YouTube(video_url)
video_info = {
'id': yt.video_id,
'thumbnail': yt.thumbnail_url,
'title': yt.title,
'views': yt.views,
'length': yt.length,
# Althhough, this might seem redundant since we already have id
# but it allows the link to the video be accessed in 1-click in the API response
'url': f"https://www.youtube.com/watch?v={yt.video_id}"
}
stream = yt.streams.filter(only_audio=True)[0]
path_to_audio = f"{yt.video_id}.mp3"
stream.download(filename=path_to_audio)
t0 = time.time()
transcript = self.whisper_model.transcribe(path_to_audio, **decode_options)
t1 = time.time()
for segment in transcript['segments']:
# Remove the tokens array, it makes the response too verbose
segment.pop('tokens', None)
total = t1 - t0
print(f'Finished transcription in {total} seconds')
# postprocess the prediction
return {"transcript": transcript, 'video': video_info}
def encode_sentences(self, transcripts, batch_size=64):
"""
Encoding all of our segments at once or storing them locally would require too much compute or memory.
So we do it in batches of 64
:param transcripts:
:param batch_size:
:return:
"""
# loop through in batches of 64
all_batches = []
for i in tqdm(range(0, len(transcripts), batch_size)):
# find end position of batch (for when we hit end of data)
i_end = min(len(transcripts), i + batch_size)
# extract the metadata like text, start/end positions, etc
batch_meta = [{
**row
} for row in transcripts[i:i_end]]
# extract only text to be encoded by embedding model
batch_text = [
row['text'] for row in batch_meta
]
# create the embedding vectors
batch_vectors = self.sentence_transformer_model.encode(batch_text).tolist()
batch_details = [
{
**batch_meta[x],
'vectors': batch_vectors[x]
} for x in range(0, len(batch_meta))
]
all_batches.extend(batch_details)
return all_batches
def summarize_video(self, segments):
for index, segment in enumerate(segments):
segment['summary'] = self.summarizer(segment['text'])
segment['summary'] = segment['summary'][0]['summary_text']
print('index', index)
print('length', segment['length'])
print('text', segment['text'])
print('summary', segment['summary'])
return segments
def generate_answer(self, query, documents):
# concatenate question and support documents into BART input
conditioned_doc = "<P> " + " <P> ".join([d for d in documents])
query_and_docs = "question: {} context: {}".format(query, conditioned_doc)
model_input = self.question_answer_tokenizer(query_and_docs, truncation=False, padding=True,
return_tensors="pt")
generated_answers_encoded = self.question_answer_model.generate(
input_ids=model_input["input_ids"].to(self.device),
attention_mask=model_input["attention_mask"].to(self.device),
min_length=64,
max_length=256,
do_sample=False,
early_stopping=True,
num_beams=8,
temperature=1.0,
top_k=None,
top_p=None,
eos_token_id=self.question_answer_tokenizer.eos_token_id,
no_repeat_ngram_size=3,
num_return_sequences=1)
answer = self.question_answer_tokenizer.batch_decode(generated_answers_encoded, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
return answer
@staticmethod
def combine_transcripts(video, window=6, stride=3):
"""
:param video:
:param window: number of sentences to combine
:param stride: number of sentences to 'stride' over, used to create overlap
:return:
"""
new_transcript_segments = []
video_info = video['video']
transcript_segments = video['transcript']['segments']
for i in tqdm(range(0, len(transcript_segments), stride)):
i_end = min(len(transcript_segments), i + window)
text = ' '.join(transcript['text']
for transcript in
transcript_segments[i:i_end])
# TODO: Should int (float to seconds) conversion happen at the API level?
start = int(transcript_segments[i]['start'])
end = int(transcript_segments[i]['end'])
new_transcript_segments.append({
**video_info,
**{
'start': start,
'end': end,
'title': video_info['title'],
'text': text,
'id': f"{video_info['id']}-t{start}",
'url': f"https://youtu.be/{video_info['id']}?t={start}",
'video_id': video_info['id'],
}
})
return new_transcript_segments
|