Update modeling_densebackward_olmoe0125.py
Browse files- modeling_densebackward_olmoe0125.py +123 -34
modeling_densebackward_olmoe0125.py
CHANGED
@@ -25,7 +25,7 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
|
|
25 |
"""
|
26 |
def forward(self, hidden_states: torch.Tensor):
|
27 |
"""
|
28 |
-
|
29 |
"""
|
30 |
batch_size, seq_length, hidden_dim = hidden_states.shape
|
31 |
dtype = hidden_states.dtype
|
@@ -34,49 +34,73 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
|
|
34 |
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
|
35 |
N_tokens = flat_hidden.size(0)
|
36 |
|
37 |
-
#
|
38 |
-
router_logits = self.gate(flat_hidden).to(dtype=dtype)
|
39 |
-
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (
|
|
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
# 3) build hard & ste masks
|
45 |
-
mask_hard = F.one_hot(selected_experts, num_classes=self.num_experts).sum(dim=1).to(dtype) # (N, num_experts)
|
46 |
-
#mask_ste = mask_hard + (routing_weights - routing_weights.detach())
|
47 |
-
mask_ste = mask_hard + (router_logits - router_logits.detach())
|
48 |
-
|
49 |
-
# 4) compute gated weights = π * mask, then optionally renormalize
|
50 |
-
gated = routing_weights * mask_ste # zero-out non-TopK
|
51 |
if self.norm_topk_prob:
|
52 |
-
norm_ratio =
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
dense_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
|
57 |
sparse_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
activation_mask = (selected_experts == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
63 |
if expert_output.requires_grad:
|
64 |
expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
|
65 |
-
|
66 |
-
#
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
78 |
final_flat = sparse_outputs.detach() + (dense_outputs - dense_outputs.detach())
|
79 |
-
|
|
|
80 |
|
81 |
return final_output, router_logits
|
82 |
|
@@ -85,6 +109,71 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
|
|
85 |
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
# def forward(self, hidden_states: torch.Tensor):
|
89 |
# batch_size, seq_length, hidden_dim = hidden_states.shape
|
90 |
# # 记录输入张量的数据类型,确保所有计算保持一致
|
|
|
25 |
"""
|
26 |
def forward(self, hidden_states: torch.Tensor):
|
27 |
"""
|
28 |
+
forward_partscale_fixep_norm_dtch_tau
|
29 |
"""
|
30 |
batch_size, seq_length, hidden_dim = hidden_states.shape
|
31 |
dtype = hidden_states.dtype
|
|
|
34 |
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
|
35 |
N_tokens = flat_hidden.size(0)
|
36 |
|
37 |
+
# Compute routing logic
|
38 |
+
router_logits = self.gate(flat_hidden).to(dtype=dtype) # (B*L, num_experts)
|
39 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*L, num_experts)
|
40 |
+
routing_weights_tau = F.softmax(router_logits / 1.1, dim=1, dtype=torch.float) # (B*L, num_experts)
|
41 |
|
42 |
+
# Select top-k experts
|
43 |
+
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
44 |
+
routing_weights_topk_tau, selected_experts_tau = torch.topk(routing_weights_tau, self.top_k, dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
if self.norm_topk_prob:
|
46 |
+
norm_ratio = routing_weights_topk.sum(dim=-1, keepdim=True)
|
47 |
+
# Normalize top-k routing weights
|
48 |
+
routing_weights_topk = routing_weights_topk / norm_ratio
|
49 |
+
# Only scale the selected top-k positions in routing_weights
|
50 |
+
mask = F.one_hot(selected_experts_tau, num_classes=self.num_experts).sum(dim=1).to(dtype)
|
51 |
+
routing_weights_topk_tau = routing_weights_tau * mask
|
52 |
+
norm_ratio_dense = routing_weights_topk_tau.sum(dim=-1, keepdim=True)
|
53 |
+
# ------------------------------------Choose Section-----------------------------------------------
|
54 |
+
# current --> partscale_fix_expert implementation
|
55 |
+
routing_weights_tau = routing_weights_tau * (1.0 - mask) / norm_ratio_dense.detach() + routing_weights_topk_tau / norm_ratio_dense
|
56 |
+
routing_weights = routing_weights * (1.0 - mask) / norm_ratio.detach() + routing_weights * mask / norm_ratio
|
57 |
+
|
58 |
+
# should be --> the gated implemenation, by comment out the line above and uncomment the two lines below
|
59 |
+
# gated = routing_weights.detach() * mask + (routing_weights - routing_weights.detach())
|
60 |
+
# routing_weights = gated / gated.sum(dim=-1, keepdim=True)
|
61 |
+
# ------------------------------------Choose Section-----------------------------------------------
|
62 |
|
63 |
+
routing_weights_topk = routing_weights_topk.to(dtype=dtype)
|
64 |
+
|
65 |
+
# Convert full routing_weights to consistent dtype for dense accumulation
|
66 |
+
# routing_weights = routing_weights.to(dtype=dtype)
|
67 |
+
routing_weights_tau = routing_weights_tau.to(dtype=dtype)
|
68 |
+
|
69 |
+
# Prepare accumulators: one for dense_outputs, one for sparse_outputs
|
70 |
dense_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
|
71 |
sparse_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
|
72 |
|
73 |
+
# For mapping top-k positions when accumulating sparse_outputs
|
74 |
+
# selected_experts: (N_tokens, top_k)
|
|
|
75 |
|
76 |
+
for expert_idx in range(self.num_experts):
|
77 |
+
expert_layer = self.experts[expert_idx]
|
78 |
+
# Compute current expert output for all tokens
|
79 |
+
expert_output = expert_layer(flat_hidden).to(dtype=dtype) # (N_tokens, hidden_dim)
|
80 |
+
activation_mask = (selected_experts_tau == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
|
81 |
if expert_output.requires_grad:
|
82 |
expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
|
83 |
+
expert_output = expert_output.to(dtype=dtype)
|
84 |
+
# Dense accumulation: multiply by full routing weight and add
|
85 |
+
weight_full_tau = routing_weights_tau[:, expert_idx].unsqueeze(-1) # (N_tokens, 1)
|
86 |
+
weight_full = routing_weights[:, expert_idx].unsqueeze(-1) # (N_tokens, 1)
|
87 |
+
dense_outputs = dense_outputs + expert_output * (weight_full_tau-weight_full_tau.detach()) + expert_output * weight_full.detach()
|
88 |
+
|
89 |
+
# Sparse accumulation: find tokens where this expert is among top_k
|
90 |
+
# matches: Boolean mask where selected_experts == expert_idx → shape (N_tokens, top_k)
|
91 |
+
matches = (selected_experts == expert_idx)
|
92 |
+
if matches.any():
|
93 |
+
# locations: tuple of (token_indices, k_indices)
|
94 |
+
token_indices, k_indices = torch.where(matches)
|
95 |
+
# corresponding top-k weights
|
96 |
+
weights_topk = routing_weights_topk[token_indices, k_indices].unsqueeze(-1) # (num_matches, 1)
|
97 |
+
# Accumulate sparse_outputs only for matched tokens
|
98 |
+
sparse_outputs[token_indices] = sparse_outputs[token_indices] + expert_output[token_indices] * weights_topk
|
99 |
+
|
100 |
+
# Combine sparse forward output and dense backward output
|
101 |
final_flat = sparse_outputs.detach() + (dense_outputs - dense_outputs.detach())
|
102 |
+
final_flat = final_flat.to(dtype=dtype)
|
103 |
+
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
|
104 |
|
105 |
return final_output, router_logits
|
106 |
|
|
|
109 |
|
110 |
|
111 |
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
# def forward(self, hidden_states: torch.Tensor):
|
116 |
+
# """
|
117 |
+
# Gate version of implementation of straight-through, π -> mask, dmask / dπ = 1
|
118 |
+
# """
|
119 |
+
# batch_size, seq_length, hidden_dim = hidden_states.shape
|
120 |
+
# dtype = hidden_states.dtype
|
121 |
+
# device = hidden_states.device
|
122 |
+
|
123 |
+
# flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
|
124 |
+
# N_tokens = flat_hidden.size(0)
|
125 |
+
|
126 |
+
# # 1) router & softmax
|
127 |
+
# router_logits = self.gate(flat_hidden).to(dtype=dtype) # (N, num_experts)
|
128 |
+
# routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (N, num_experts)
|
129 |
+
|
130 |
+
# # 2) top-K selection
|
131 |
+
# _, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) # (N, K), (N, K)
|
132 |
+
|
133 |
+
# # 3) build hard & ste masks
|
134 |
+
# mask_hard = F.one_hot(selected_experts, num_classes=self.num_experts).sum(dim=1).to(dtype) # (N, num_experts)
|
135 |
+
# #mask_ste = mask_hard + (routing_weights - routing_weights.detach())
|
136 |
+
# mask_ste = mask_hard + (router_logits - router_logits.detach())
|
137 |
+
|
138 |
+
# # 4) compute gated weights = π * mask, then optionally renormalize
|
139 |
+
# gated = routing_weights * mask_ste # zero-out non-TopK
|
140 |
+
# if self.norm_topk_prob:
|
141 |
+
# norm_ratio = gated.sum(dim=-1, keepdim=True) # (N,1)
|
142 |
+
# gated = gated / norm_ratio # normalized TopK
|
143 |
+
|
144 |
+
# # 5)prepare accumulators
|
145 |
+
# dense_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
|
146 |
+
# sparse_outputs = torch.zeros((N_tokens, hidden_dim), dtype=dtype, device=device)
|
147 |
+
|
148 |
+
# for expert_idx, expert_layer in enumerate(self.experts):
|
149 |
+
# expert_output = expert_layer(flat_hidden).to(dtype=dtype) # (N_tokens, hidden_dim)
|
150 |
+
# activation_mask = (selected_experts == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
|
151 |
+
|
152 |
+
# if expert_output.requires_grad:
|
153 |
+
# expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
|
154 |
+
|
155 |
+
# # a) Dense-STE backward uses gated weights
|
156 |
+
# weights = gated[:, expert_idx].unsqueeze(-1) # (N_tokens, 1)
|
157 |
+
# dense_outputs += expert_output * weights
|
158 |
+
|
159 |
+
# # b) Sparse forward -- find tokens where this expert is among top_k (active experts)
|
160 |
+
# active = (selected_experts == expert_idx)
|
161 |
+
# if active.any():
|
162 |
+
# token_indices, _ = torch.where(active)
|
163 |
+
# weights_topk = gated[token_indices, expert_idx].unsqueeze(-1) # (num_matches,1)
|
164 |
+
# sparse_outputs[token_indices] += expert_output[token_indices] * weights_topk
|
165 |
+
|
166 |
+
# # 6) STE mix: forward from sparse, backward from dense
|
167 |
+
# final_flat = sparse_outputs.detach() + (dense_outputs - dense_outputs.detach())
|
168 |
+
# final_output = final_flat.view(batch_size, seq_length, hidden_dim).to(dtype=dtype)
|
169 |
+
|
170 |
+
# return final_output, router_logits
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
# def forward(self, hidden_states: torch.Tensor):
|
178 |
# batch_size, seq_length, hidden_dim = hidden_states.shape
|
179 |
# # 记录输入张量的数据类型,确保所有计算保持一致
|