Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Legal-HeBERT
|
2 |
+
Legal-HeBERT is a BERT model for Hebrew legal and legislative domains. It is intended to improve the legal NLP research and tools development in Hebrew. We release two versions of Legal-HeBERT. The first version is a fine-tuned model of [HeBERT](https://github.com/avichaychriqui/HeBERT) applied on legal and legislative documents. The second version uses [HeBERT](https://github.com/avichaychriqui/HeBERT)'s architecture guidlines to train a BERT model from scratch. <br>
|
3 |
+
We continue collecting legal data, examining different architectural designs, and performing tagged datasets and legal tasks for evaluating and to development of a Hebrew legal tools.
|
4 |
+
|
5 |
+
## Training Data
|
6 |
+
Our training datasets are:
|
7 |
+
| Name | Hebrew Description | Size (GB) | Documents | Sentences | Words | Notes |
|
8 |
+
|---|---|---|---|---|---|---|
|
9 |
+
| The Israeli Law Book | ספר החוקים הישראלי | 0.05 | 2338 | 293352 | 4851063 | |
|
10 |
+
| Judgments of the Supreme Court | מאגר פסקי הדין של בית המשפט העליון | 0.7 | 212348 | 5790138 | 79672415 | |
|
11 |
+
| custody courts | החלטות בתי הדין למשמורת | 2.46 | 169,708 | 8,555,893 | 213,050,492 | |
|
12 |
+
| Law memoranda, drafts of secondary legislation and drafts of support tests that have been distributed to the public for comment | תזכירי חוק, טיוטות חקיקת משנה וטיוטות מבחני תמיכה שהופצו להערות הציבור | 0.4 | 3,291 | 294,752 | 7,218,960 | |
|
13 |
+
| Supervisors of Land Registration judgments | מאגר פסקי דין של המפקחים על רישום המקרקעין | 0.02 | 559 | 67,639 | 1,785,446 | |
|
14 |
+
| Decisions of the Labor Court - Corona | מאגר החלטות בית הדין לעניין שירות התעסוקה – קורונה | 0.001 | 146 | 3505 | 60195 | |
|
15 |
+
| Decisions of the Israel Lands Council | החלטות מועצת מקרקעי ישראל | | 118 | 11283 | 162692 | aggregate file |
|
16 |
+
| Judgments of the Disciplinary Tribunal and the Israel Police Appeals Tribunal | פסקי דין של בית הדין למשמעת ובית הדין לערעורים של משטרת ישראל | 0.02 | 54 | 83724 | 1743419 | aggregate files |
|
17 |
+
| Disciplinary Appeals Committee in the Ministry of Health | ועדת ערר לדין משמעתי במשרד הבריאות | 0.004 | 252 | 21010 | 429807 | 465 files are scanned and didn't parser |
|
18 |
+
| Attorney General's Positions | מאגר התייצבויות היועץ המשפטי לממשלה | 0.008 | 281 | 32724 | 813877 | |
|
19 |
+
| Legal-Opinion of the Attorney General | מאגר חוות דעת היועץ המשפטי לממשלה | 0.002 | 44 | 7132 | 188053 | |
|
20 |
+
| | | | | | | |
|
21 |
+
| total | | 3.665 | 389,139 | 15,161,152 | 309,976,419 | |
|
22 |
+
|
23 |
+
We thank <b>Yair Gardin</b> for the referring to the governance data, <b>Elhanan Schwarts</b> for collecting and parsing The Israeli law book, and <b>Jonathan Schler</b> for collecting the judgments of the supreme court.
|
24 |
+
|
25 |
+
|
26 |
+
## Training process
|
27 |
+
* Vocabulary size: 50,000 tokens
|
28 |
+
* 4 epochs (1M steps±)
|
29 |
+
* lr=5e-5
|
30 |
+
* mlm_probability=0.15
|
31 |
+
* batch size = 32 (for each gpu)
|
32 |
+
* NVIDIA GeForce RTX 2080 TI + NVIDIA GeForce RTX 3090 (1 week training)
|
33 |
+
|
34 |
+
### Additional training settings:
|
35 |
+
<b>Fine-tuned [HeBERT](https://github.com/avichaychriqui/HeBERT) model:</b> The first eight layers were freezed (like [Lee et al. (2019)](https://arxiv.org/abs/1911.03090) suggest)<br>
|
36 |
+
<b>Legal-HeBERT trained from scratch:</b> The training process is similar to [HeBERT](https://github.com/avichaychriqui/HeBERT) and inspired by [Chalkidis et al. (2020)](https://arxiv.org/abs/2010.02559) <br>
|
37 |
+
|
38 |
+
## How to use
|
39 |
+
The models can be found in huggingface hub and can be fine-tunned to any down-stream task:
|
40 |
+
```
|
41 |
+
# !pip install transformers==4.14.1
|
42 |
+
from transformers import AutoTokenizer, AutoModel
|
43 |
+
|
44 |
+
model_name = 'avichr/Legal-heBERT_ft' # for the fine-tuned HeBERT model
|
45 |
+
model_name = 'avichr/Legal-heBERT' # for legal HeBERT model trained from scratch
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
+
model = AutoModel.from_pretrained(model_name)
|
49 |
+
|
50 |
+
from transformers import pipeline
|
51 |
+
fill_mask = pipeline(
|
52 |
+
"fill-mask",
|
53 |
+
model=model_name,
|
54 |
+
)
|
55 |
+
fill_mask("הקורונה לקחה את [MASK] ולנו לא נשאר דבר.")
|
56 |
+
```
|
57 |
+
## Stay tuned!
|
58 |
+
We are still working on our models and the datasets. We will edit this page as we progress. We are open for collaborations.
|
59 |
+
|
60 |
+
## Contact us
|
61 |
+
[Avichay Chriqui](mailto:[email protected]), The Coller AI Lab <br>
|
62 |
+
[Inbal yahav](mailto:[email protected]), The Coller AI Lab <br>
|
63 |
+
[Ittai Bar-Siman-Tov](mailto:[email protected]), the BIU Innovation Lab for Law, Data-Science and Digital Ethics <br>
|
64 |
+
|
65 |
+
Thank you, תודה, شكرا <br>
|