--- library_name: transformers license: mit base_model: microsoft/deberta-v3-xsmall tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Noisy-deberta-v3-xsmall-Label_B-768-epochs-5 results: [] --- # Noisy-deberta-v3-xsmall-Label_B-768-epochs-5 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0850 - Accuracy: 0.9839 - F1: 0.9839 - Precision: 0.9841 - Recall: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0801 | 0.9995 | 1066 | 0.1455 | 0.9542 | 0.9535 | 0.9565 | 0.9542 | | 0.0581 | 1.9993 | 2132 | 0.0792 | 0.9805 | 0.9805 | 0.9807 | 0.9805 | | 0.0543 | 2.9991 | 3198 | 0.3059 | 0.9434 | 0.9423 | 0.9495 | 0.9434 | | 0.0003 | 3.9998 | 4265 | 0.0850 | 0.9839 | 0.9839 | 0.9841 | 0.9839 | | 0.0006 | 4.9986 | 5330 | 0.1618 | 0.9737 | 0.9737 | 0.9747 | 0.9737 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3