--- library_name: transformers license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Noisy10per-deberta-v3-small-Label_B-768-epochs-9 results: [] --- # Noisy10per-deberta-v3-small-Label_B-768-epochs-9 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1297 - Accuracy: 0.9854 - F1: 0.9854 - Precision: 0.9856 - Recall: 0.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0764 | 0.9995 | 1066 | 0.1081 | 0.9730 | 0.9731 | 0.9733 | 0.9730 | | 0.083 | 1.9993 | 2132 | 0.1059 | 0.9763 | 0.9762 | 0.9770 | 0.9763 | | 0.0474 | 2.9991 | 3198 | 0.0775 | 0.9833 | 0.9833 | 0.9834 | 0.9833 | | 0.0028 | 3.9998 | 4265 | 0.1005 | 0.9818 | 0.9818 | 0.9821 | 0.9818 | | 0.0025 | 4.9995 | 5331 | 0.1092 | 0.9841 | 0.9842 | 0.9843 | 0.9841 | | 0.0287 | 5.9993 | 6397 | 0.1633 | 0.9820 | 0.9821 | 0.9827 | 0.9820 | | 0.0085 | 6.9991 | 7463 | 0.1640 | 0.9814 | 0.9814 | 0.9818 | 0.9814 | | 0.001 | 7.9998 | 8530 | 0.1297 | 0.9854 | 0.9854 | 0.9856 | 0.9854 | | 0.0 | 8.9977 | 9594 | 0.1368 | 0.9851 | 0.9852 | 0.9853 | 0.9851 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3