--- library_name: transformers license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-small-Label_B-768-epochs-5 results: [] --- # deberta-v3-small-Label_B-768-epochs-5 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0703 - Accuracy: 0.9868 - F1: 0.9868 - Precision: 0.9869 - Recall: 0.9868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0851 | 0.9995 | 1066 | 0.0843 | 0.9747 | 0.9746 | 0.9752 | 0.9747 | | 0.0433 | 2.0 | 2133 | 0.0894 | 0.9755 | 0.9755 | 0.9764 | 0.9755 | | 0.0251 | 2.9995 | 3199 | 0.0651 | 0.9829 | 0.9829 | 0.9831 | 0.9829 | | 0.0025 | 4.0 | 4266 | 0.0703 | 0.9868 | 0.9868 | 0.9869 | 0.9868 | | 0.0035 | 4.9977 | 5330 | 0.0996 | 0.9819 | 0.9820 | 0.9824 | 0.9819 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0