--- library_name: transformers license: mit base_model: microsoft/deberta-v3-xsmall tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-xsmall-Label_B-1024-Epochs-2 results: [] --- # deberta-v3-xsmall-Label_B-1024-epoch-2 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0823 - Accuracy: 0.9779 - F1: 0.9780 - Precision: 0.9786 - Recall: 0.9779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1048 | 0.9994 | 1279 | 0.1988 | 0.9411 | 0.9408 | 0.9499 | 0.9411 | | 0.0125 | 1.9988 | 2558 | 0.0823 | 0.9779 | 0.9780 | 0.9786 | 0.9779 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0