--- license: mit base_model: microsoft/deberta-v3-xsmall tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-xsmall-Label_B-1024 results: [] --- # deberta-v3-xsmall-Label_B-1024 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0888 - Accuracy: 0.9744 - F1: 0.9743 - Precision: 0.9749 - Recall: 0.9744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.052 | 1.0 | 1828 | 0.0888 | 0.9744 | 0.9743 | 0.9749 | 0.9744 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.5.0+cu124 - Datasets 2.18.0 - Tokenizers 0.19.1