avojarot commited on
Commit
eaa8fa0
·
1 Parent(s): c534550

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1917.95 +/- 101.73
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:736bd5460810dec9eed9add32946987ecedcc56bb43bc194c228e23d55d5f6e1
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd25255a430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd25255a4c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd25255a550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd25255a5e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd25255a670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd25255a700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd25255a790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd25255a820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd25255a8b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd25255a940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd25255a9d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd25255aa60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd2525567b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677663825935936439,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPunJj+5uLY/blKFP0B4cL97iak/V3xDvaHOlT9FrVQ/Fn+6vzHG8Dveofs/gBQ0Pv3Gvb/RQBnAh/4BwMOCsz2rWMo/R4wbviFK5L4xg/q/IjWzu2VkYj2Psy8/h9tdP5GQMD8IMFbA04gtPyxtqj9nExK/J2novhGhDz3qn6U/TWOAv5ZGBT7SqHa+SbaAPUQwub94AYs9KuDmvhXWJD/rs8E+XdSgPkLvFj+C4n49CznLP9SNfL3UQsK+TCESvTzvkj9rHJi+KV5RP4u3tz4alrm/w/yYPrjTvL8sbao/bv+TP72B177al5w9h9TbP/DcgL+lhpI/mSwZv3W3hr+ZZZA/XgpsP7vtxj49PQu/YbKOPtJYAT7e3wo/0+3PPOmEAb/NMnu/t3gzv0lWOj9fJmk/0hfUvh+WXz92cBe+kZAwP8P8mD7TiC0/R0VAvx8uh74jsv2+UBOdvGERbj91kYa/dfeUP1B8NrzUMte+jkWQvuJLDT8RZb8+LcqIPa1HSD/rT56/gBIKP2rsljzigHo/XfGOv9fDsL56Ow2/diWRP30WFr3e5HI/qT0dvpGQMD/D/Jg+04gtP0dFQL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABICQw3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASZmOvQAAAAAgCe2/AAAAAKLbBD4AAAAA9Vr+PwAAAABvMbA9AAAAAPa7+D8AAAAAd2qPvQAAAACurvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAObYgNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLUl170AAAAAzBrjvwAAAABlpWc9AAAAAFOp+D8AAAAAQEcIPgAAAADFCuk/AAAAAItK/L0AAAAAqP3zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHvlbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAKyoq8AAAAAJoVAMAAAAAASZGFPQAAAAAUy/M/AAAAAGW+/L0AAAAANIkAQAAAAAB6VSE7AAAAAGse+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrw8Q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyXLZvQAAAAB5t+i/AAAAAN90CT4AAAAArTjqPwAAAAB5bd08AAAAAD1b5z8AAAAA+BDAPAAAAABZg/+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJgTdSydFv2MAWyUTegDjAF0lEdAsJRfewcHW3V9lChoBkdAlg6CNGViWmgHTegDaAhHQLCUhmxt52R1fZQoaAZHQJcA2uDBdldoB03oA2gIR0CwlRzwUg0TdX2UKGgGR0Cbwzn9NvfkaAdN6ANoCEdAsJriJDVpbnV9lChoBkdAmB2CWqtHQWgHTegDaAhHQLCcE9JSR8t1fZQoaAZHQJeIIwi7kGRoB03oA2gIR0CwnCqyB06pdX2UKGgGR0CZjW3PzFuOaAdN6ANoCEdAsJyNOVPepHV9lChoBkdAlso2ycCo0mgHTegDaAhHQLCkWrTYukF1fZQoaAZHQJaJ98NQTEloB03oA2gIR0CwpcJwn6VMdX2UKGgGR0CYo9XTmW+oaAdN6ANoCEdAsKXYxvegtnV9lChoBkdAlx/sBZIQOGgHTegDaAhHQLCmP114gRt1fZQoaAZHQJTz6gAZKnNoB03oA2gIR0CwrAAIyCWedX2UKGgGR0CWlQWk8A7xaAdN6ANoCEdAsK0oZrHlwXV9lChoBkdAkt1HYpUgjmgHTegDaAhHQLCtP5S3sol1fZQoaAZHQJBY4mhM8HRoB03oA2gIR0CwraU70WdmdX2UKGgGR0CWm+ajN6gNaAdN6ANoCEdAsLWaN70Fr3V9lChoBkdAlfW4m1IAfmgHTegDaAhHQLC20yad+Xt1fZQoaAZHQJdlN60IC2doB03oA2gIR0CwtukOd5IIdX2UKGgGR0CVfOc7hegMaAdN6ANoCEdAsLdMnXumanV9lChoBkdAmPS6BZpztGgHTegDaAhHQLC9EpKzzEt1fZQoaAZHQJzoWb3Gn4xoB03oA2gIR0CwvkHQUpNLdX2UKGgGR0CbKL75Ec81aAdN6ANoCEdAsL5aJ0nw5XV9lChoBkdAm9tONDMNdGgHTegDaAhHQLC+yaakRBh1fZQoaAZHQJ2kgOSW7e5oB03oA2gIR0CwxsL7CSA6dX2UKGgGR0CeeUOJcgQpaAdN6ANoCEdAsMfrXCj1w3V9lChoBkdAnpjy9mHxjWgHTegDaAhHQLDIAbKA8Sx1fZQoaAZHQJ1Dwk1Mue1oB03oA2gIR0CwyGaBiCrcdX2UKGgGR0CcIi5ggHNYaAdN6ANoCEdAsM4Yh/y5JHV9lChoBkdAnF0/rfLs8mgHTegDaAhHQLDPggiu+yt1fZQoaAZHQJ3WdZRsMy9oB03oA2gIR0Cwz6RVMmF8dX2UKGgGR0CcjExubZvlaAdN6ANoCEdAsNA9XfZVXHV9lChoBkdAmcR22sq8UWgHTegDaAhHQLDXnBt1p0x1fZQoaAZHQJtNMbEP1+RoB03oA2gIR0Cw2M9l2/zrdX2UKGgGR0CcqNg9vCMxaAdN6ANoCEdAsNjlUsFt9HV9lChoBkdAmzSi3solU2gHTegDaAhHQLDZRc0tRN11fZQoaAZHQJ1tibVjI7xoB03oA2gIR0Cw3wSTUy57dX2UKGgGR0CbQXYa5wwTaAdN6ANoCEdAsODe2oegc3V9lChoBkdAnRN+mBOHnGgHTegDaAhHQLDhA2EkB0Z1fZQoaAZHQJoYRFtsN2FoB03oA2gIR0Cw4aKREF4cdX2UKGgGR0CaheNBF/hEaAdN6ANoCEdAsOhz1M/QjXV9lChoBkdAkvO/StvGZWgHTegDaAhHQLDpoelbeM11fZQoaAZHQJoXK9L6DXhoB03oA2gIR0Cw6bktyxRmdX2UKGgGR0CYsCoFV1fWaAdN6ANoCEdAsOogdjoZAXV9lChoBkdAnWgnNTtLMGgHTegDaAhHQLDwhhV2icp1fZQoaAZHQJGT6u2Zy+9oB03oA2gIR0Cw8nX8sMAndX2UKGgGR0CbB3NwiqyXaAdN6ANoCEdAsPKd9Tgl4XV9lChoBkdAnjx8OoYNzGgHTegDaAhHQLDzRnnMdLh1fZQoaAZHQJs1150KZ2JoB03oA2gIR0Cw+ZJOSGJvdX2UKGgGR0CdQAJHy3CsaAdN6ANoCEdAsPq936hxpHV9lChoBkdAnSRmyX2M9GgHTegDaAhHQLD61Qp4KQd1fZQoaAZHQJsMsGr0aqFoB03oA2gIR0Cw+zdUOuq4dX2UKGgGR0Cb4V9Aood/aAdN6ANoCEdAsQIMwUQCjnV9lChoBkdAnEIeocaOxWgHTegDaAhHQLEEBAFgUlB1fZQoaAZHQJ1SK1mapgloB03oA2gIR0CxBCxuGbkPdX2UKGgGR0CcV6RXfZVXaAdN6ANoCEdAsQTD36AOKHV9lChoBkdAnb4SxmkFfWgHTegDaAhHQLEKbfoRqXZ1fZQoaAZHQJ9U0ABDG99oB03oA2gIR0CxC5SgkC3gdX2UKGgGR0Cdzdj6eoUBaAdN6ANoCEdAsQus7/4qPXV9lChoBkdAnqJ2S+xnnWgHTegDaAhHQLEMD46fapR1fZQoaAZHQJtnYuVX3g1oB03oA2gIR0CxE4OLWI43dX2UKGgGR0Cdhq3tKIznaAdN6ANoCEdAsRUVgTh5xHV9lChoBkdAnRbMzVMEimgHTegDaAhHQLEVLai9Iwx1fZQoaAZHQKBoP5AQg9xoB03oA2gIR0CxFZLcbiqAdX2UKGgGR0CeHDKzzErHaAdN6ANoCEdAsRs07zTWoXV9lChoBkdAmV6xDkU9IWgHTegDaAhHQLEcZxDst051fZQoaAZHQKAmJs1KoQ5oB03oA2gIR0CxHH3OfNA1dX2UKGgGR0CfPcXEqDsdaAdN6ANoCEdAsRzi3b212XV9lChoBkdAnCemdRR/E2gHTegDaAhHQLEk2Jmukk91fZQoaAZHQJl6PS8an75oB03oA2gIR0CxJgFMqSX/dX2UKGgGR0Ccp3ZHNHH4aAdN6ANoCEdAsSYXnB+F13V9lChoBkdAnME2xdIGyGgHTegDaAhHQLEmeo60Y0l1fZQoaAZHQJ1ysOQQtjFoB03oA2gIR0CxLDKYzBRAdX2UKGgGR0CY/27HQyAQaAdN6ANoCEdAsS1WryUcGXV9lChoBkdAn5D7fcer/GgHTegDaAhHQLEtbJVKf4B1fZQoaAZHQJ3sXVsk6cRoB03oA2gIR0CxLdc9SuQqdX2UKGgGR0CdmXRkEs8QaAdN6ANoCEdAsTXJ9hJAdHV9lChoBkdAmsR36uW8iGgHTegDaAhHQLE2+FNL1291fZQoaAZHQJorBtygf2doB03oA2gIR0CxNw6gmJFcdX2UKGgGR0CcIAhIOH32aAdN6ANoCEdAsTd1H7P6bnV9lChoBkdAl9/6a1Cw8mgHTegDaAhHQLE9HjVhCt11fZQoaAZHQJiuDgKnei1oB03oA2gIR0CxPloYm9g4dX2UKGgGR0COMd4ubqhUaAdN6ANoCEdAsT5/csUZenV9lChoBkdAmZmpZ8rqdGgHTegDaAhHQLE/HuTRplB1fZQoaAZHQJqJTmJWNm1oB03oA2gIR0CxRs2W6bvxdX2UKGgGR0CZ3E8g6ltTaAdN6ANoCEdAsUfz5qM3qHV9lChoBkdAkZ2gpF1B+mgHTegDaAhHQLFICeRxLkF1fZQoaAZHQJOamCf6Gg1oB03oA2gIR0CxSHBFI/Z/dX2UKGgGR0CVUguJDVpcaAdN6ANoCEdAsU4ZdrwfAHV9lChoBkdAln+BeLNwBGgHTegDaAhHQLFPxREF4cF1fZQoaAZHQJIIwPlMh5hoB03oA2gIR0CxT+hUvPC3dX2UKGgGR0CTyUMvRJEqaAdN6ANoCEdAsVCBFx4pt3V9lChoBkdAjUCtet0V8GgHTegDaAhHQLFXnrXlKbt1fZQoaAZHQJE8aXLNfPZoB03oA2gIR0CxWMIG+sYEdX2UKGgGR0CYZTTsY2sJaAdN6ANoCEdAsVjYfPomonV9lChoBkdAkrv9XcQAdWgHTegDaAhHQLFZOfkmx+t1fZQoaAZHQJwFr2mHgxdoB03oA2gIR0CxXyw6EJ0GdX2UKGgGR0CdNwUWEbo9aAdN6ANoCEdAsWEApYs/ZHV9lChoBkdAnXgDAaef7WgHTegDaAhHQLFhJSZBsyl1fZQoaAZHQJvr/2oNutRoB03oA2gIR0CxYclZcLSedX2UKGgGR0CdC+9QoCuEaAdN6ANoCEdAsWhWuPmxMXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97db7f550774a038140b6df21bbe322fd681aae07a21b8ad7d37c8aa58bc5152
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a169918ed098f76a7d3d471aec5e3b269a6e178a6373c6e728745ef986141e5c
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd25255a430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd25255a4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd25255a550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd25255a5e0>", "_build": "<function ActorCriticPolicy._build at 0x7fd25255a670>", "forward": "<function ActorCriticPolicy.forward at 0x7fd25255a700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd25255a790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd25255a820>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd25255a8b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd25255a940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd25255a9d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd25255aa60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd2525567b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677663825935936439, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPunJj+5uLY/blKFP0B4cL97iak/V3xDvaHOlT9FrVQ/Fn+6vzHG8Dveofs/gBQ0Pv3Gvb/RQBnAh/4BwMOCsz2rWMo/R4wbviFK5L4xg/q/IjWzu2VkYj2Psy8/h9tdP5GQMD8IMFbA04gtPyxtqj9nExK/J2novhGhDz3qn6U/TWOAv5ZGBT7SqHa+SbaAPUQwub94AYs9KuDmvhXWJD/rs8E+XdSgPkLvFj+C4n49CznLP9SNfL3UQsK+TCESvTzvkj9rHJi+KV5RP4u3tz4alrm/w/yYPrjTvL8sbao/bv+TP72B177al5w9h9TbP/DcgL+lhpI/mSwZv3W3hr+ZZZA/XgpsP7vtxj49PQu/YbKOPtJYAT7e3wo/0+3PPOmEAb/NMnu/t3gzv0lWOj9fJmk/0hfUvh+WXz92cBe+kZAwP8P8mD7TiC0/R0VAvx8uh74jsv2+UBOdvGERbj91kYa/dfeUP1B8NrzUMte+jkWQvuJLDT8RZb8+LcqIPa1HSD/rT56/gBIKP2rsljzigHo/XfGOv9fDsL56Ow2/diWRP30WFr3e5HI/qT0dvpGQMD/D/Jg+04gtP0dFQL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABICQw3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASZmOvQAAAAAgCe2/AAAAAKLbBD4AAAAA9Vr+PwAAAABvMbA9AAAAAPa7+D8AAAAAd2qPvQAAAACurvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAObYgNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLUl170AAAAAzBrjvwAAAABlpWc9AAAAAFOp+D8AAAAAQEcIPgAAAADFCuk/AAAAAItK/L0AAAAAqP3zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHvlbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAKyoq8AAAAAJoVAMAAAAAASZGFPQAAAAAUy/M/AAAAAGW+/L0AAAAANIkAQAAAAAB6VSE7AAAAAGse+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrw8Q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyXLZvQAAAAB5t+i/AAAAAN90CT4AAAAArTjqPwAAAAB5bd08AAAAAD1b5z8AAAAA+BDAPAAAAABZg/+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJgTdSydFv2MAWyUTegDjAF0lEdAsJRfewcHW3V9lChoBkdAlg6CNGViWmgHTegDaAhHQLCUhmxt52R1fZQoaAZHQJcA2uDBdldoB03oA2gIR0CwlRzwUg0TdX2UKGgGR0Cbwzn9NvfkaAdN6ANoCEdAsJriJDVpbnV9lChoBkdAmB2CWqtHQWgHTegDaAhHQLCcE9JSR8t1fZQoaAZHQJeIIwi7kGRoB03oA2gIR0CwnCqyB06pdX2UKGgGR0CZjW3PzFuOaAdN6ANoCEdAsJyNOVPepHV9lChoBkdAlso2ycCo0mgHTegDaAhHQLCkWrTYukF1fZQoaAZHQJaJ98NQTEloB03oA2gIR0CwpcJwn6VMdX2UKGgGR0CYo9XTmW+oaAdN6ANoCEdAsKXYxvegtnV9lChoBkdAlx/sBZIQOGgHTegDaAhHQLCmP114gRt1fZQoaAZHQJTz6gAZKnNoB03oA2gIR0CwrAAIyCWedX2UKGgGR0CWlQWk8A7xaAdN6ANoCEdAsK0oZrHlwXV9lChoBkdAkt1HYpUgjmgHTegDaAhHQLCtP5S3sol1fZQoaAZHQJBY4mhM8HRoB03oA2gIR0CwraU70WdmdX2UKGgGR0CWm+ajN6gNaAdN6ANoCEdAsLWaN70Fr3V9lChoBkdAlfW4m1IAfmgHTegDaAhHQLC20yad+Xt1fZQoaAZHQJdlN60IC2doB03oA2gIR0CwtukOd5IIdX2UKGgGR0CVfOc7hegMaAdN6ANoCEdAsLdMnXumanV9lChoBkdAmPS6BZpztGgHTegDaAhHQLC9EpKzzEt1fZQoaAZHQJzoWb3Gn4xoB03oA2gIR0CwvkHQUpNLdX2UKGgGR0CbKL75Ec81aAdN6ANoCEdAsL5aJ0nw5XV9lChoBkdAm9tONDMNdGgHTegDaAhHQLC+yaakRBh1fZQoaAZHQJ2kgOSW7e5oB03oA2gIR0CwxsL7CSA6dX2UKGgGR0CeeUOJcgQpaAdN6ANoCEdAsMfrXCj1w3V9lChoBkdAnpjy9mHxjWgHTegDaAhHQLDIAbKA8Sx1fZQoaAZHQJ1Dwk1Mue1oB03oA2gIR0CwyGaBiCrcdX2UKGgGR0CcIi5ggHNYaAdN6ANoCEdAsM4Yh/y5JHV9lChoBkdAnF0/rfLs8mgHTegDaAhHQLDPggiu+yt1fZQoaAZHQJ3WdZRsMy9oB03oA2gIR0Cwz6RVMmF8dX2UKGgGR0CcjExubZvlaAdN6ANoCEdAsNA9XfZVXHV9lChoBkdAmcR22sq8UWgHTegDaAhHQLDXnBt1p0x1fZQoaAZHQJtNMbEP1+RoB03oA2gIR0Cw2M9l2/zrdX2UKGgGR0CcqNg9vCMxaAdN6ANoCEdAsNjlUsFt9HV9lChoBkdAmzSi3solU2gHTegDaAhHQLDZRc0tRN11fZQoaAZHQJ1tibVjI7xoB03oA2gIR0Cw3wSTUy57dX2UKGgGR0CbQXYa5wwTaAdN6ANoCEdAsODe2oegc3V9lChoBkdAnRN+mBOHnGgHTegDaAhHQLDhA2EkB0Z1fZQoaAZHQJoYRFtsN2FoB03oA2gIR0Cw4aKREF4cdX2UKGgGR0CaheNBF/hEaAdN6ANoCEdAsOhz1M/QjXV9lChoBkdAkvO/StvGZWgHTegDaAhHQLDpoelbeM11fZQoaAZHQJoXK9L6DXhoB03oA2gIR0Cw6bktyxRmdX2UKGgGR0CYsCoFV1fWaAdN6ANoCEdAsOogdjoZAXV9lChoBkdAnWgnNTtLMGgHTegDaAhHQLDwhhV2icp1fZQoaAZHQJGT6u2Zy+9oB03oA2gIR0Cw8nX8sMAndX2UKGgGR0CbB3NwiqyXaAdN6ANoCEdAsPKd9Tgl4XV9lChoBkdAnjx8OoYNzGgHTegDaAhHQLDzRnnMdLh1fZQoaAZHQJs1150KZ2JoB03oA2gIR0Cw+ZJOSGJvdX2UKGgGR0CdQAJHy3CsaAdN6ANoCEdAsPq936hxpHV9lChoBkdAnSRmyX2M9GgHTegDaAhHQLD61Qp4KQd1fZQoaAZHQJsMsGr0aqFoB03oA2gIR0Cw+zdUOuq4dX2UKGgGR0Cb4V9Aood/aAdN6ANoCEdAsQIMwUQCjnV9lChoBkdAnEIeocaOxWgHTegDaAhHQLEEBAFgUlB1fZQoaAZHQJ1SK1mapgloB03oA2gIR0CxBCxuGbkPdX2UKGgGR0CcV6RXfZVXaAdN6ANoCEdAsQTD36AOKHV9lChoBkdAnb4SxmkFfWgHTegDaAhHQLEKbfoRqXZ1fZQoaAZHQJ9U0ABDG99oB03oA2gIR0CxC5SgkC3gdX2UKGgGR0Cdzdj6eoUBaAdN6ANoCEdAsQus7/4qPXV9lChoBkdAnqJ2S+xnnWgHTegDaAhHQLEMD46fapR1fZQoaAZHQJtnYuVX3g1oB03oA2gIR0CxE4OLWI43dX2UKGgGR0Cdhq3tKIznaAdN6ANoCEdAsRUVgTh5xHV9lChoBkdAnRbMzVMEimgHTegDaAhHQLEVLai9Iwx1fZQoaAZHQKBoP5AQg9xoB03oA2gIR0CxFZLcbiqAdX2UKGgGR0CeHDKzzErHaAdN6ANoCEdAsRs07zTWoXV9lChoBkdAmV6xDkU9IWgHTegDaAhHQLEcZxDst051fZQoaAZHQKAmJs1KoQ5oB03oA2gIR0CxHH3OfNA1dX2UKGgGR0CfPcXEqDsdaAdN6ANoCEdAsRzi3b212XV9lChoBkdAnCemdRR/E2gHTegDaAhHQLEk2Jmukk91fZQoaAZHQJl6PS8an75oB03oA2gIR0CxJgFMqSX/dX2UKGgGR0Ccp3ZHNHH4aAdN6ANoCEdAsSYXnB+F13V9lChoBkdAnME2xdIGyGgHTegDaAhHQLEmeo60Y0l1fZQoaAZHQJ1ysOQQtjFoB03oA2gIR0CxLDKYzBRAdX2UKGgGR0CY/27HQyAQaAdN6ANoCEdAsS1WryUcGXV9lChoBkdAn5D7fcer/GgHTegDaAhHQLEtbJVKf4B1fZQoaAZHQJ3sXVsk6cRoB03oA2gIR0CxLdc9SuQqdX2UKGgGR0CdmXRkEs8QaAdN6ANoCEdAsTXJ9hJAdHV9lChoBkdAmsR36uW8iGgHTegDaAhHQLE2+FNL1291fZQoaAZHQJorBtygf2doB03oA2gIR0CxNw6gmJFcdX2UKGgGR0CcIAhIOH32aAdN6ANoCEdAsTd1H7P6bnV9lChoBkdAl9/6a1Cw8mgHTegDaAhHQLE9HjVhCt11fZQoaAZHQJiuDgKnei1oB03oA2gIR0CxPloYm9g4dX2UKGgGR0COMd4ubqhUaAdN6ANoCEdAsT5/csUZenV9lChoBkdAmZmpZ8rqdGgHTegDaAhHQLE/HuTRplB1fZQoaAZHQJqJTmJWNm1oB03oA2gIR0CxRs2W6bvxdX2UKGgGR0CZ3E8g6ltTaAdN6ANoCEdAsUfz5qM3qHV9lChoBkdAkZ2gpF1B+mgHTegDaAhHQLFICeRxLkF1fZQoaAZHQJOamCf6Gg1oB03oA2gIR0CxSHBFI/Z/dX2UKGgGR0CVUguJDVpcaAdN6ANoCEdAsU4ZdrwfAHV9lChoBkdAln+BeLNwBGgHTegDaAhHQLFPxREF4cF1fZQoaAZHQJIIwPlMh5hoB03oA2gIR0CxT+hUvPC3dX2UKGgGR0CTyUMvRJEqaAdN6ANoCEdAsVCBFx4pt3V9lChoBkdAjUCtet0V8GgHTegDaAhHQLFXnrXlKbt1fZQoaAZHQJE8aXLNfPZoB03oA2gIR0CxWMIG+sYEdX2UKGgGR0CYZTTsY2sJaAdN6ANoCEdAsVjYfPomonV9lChoBkdAkrv9XcQAdWgHTegDaAhHQLFZOfkmx+t1fZQoaAZHQJwFr2mHgxdoB03oA2gIR0CxXyw6EJ0GdX2UKGgGR0CdNwUWEbo9aAdN6ANoCEdAsWEApYs/ZHV9lChoBkdAnXgDAaef7WgHTegDaAhHQLFhJSZBsyl1fZQoaAZHQJvr/2oNutRoB03oA2gIR0CxYclZcLSedX2UKGgGR0CdC+9QoCuEaAdN6ANoCEdAsWhWuPmxMXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93c81bc34996204ad0e5f2aa49fc05bbfd8507eaef647204a4066b14021e0035
3
+ size 1272276
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1917.9465306368306, "std_reward": 101.72637911760775, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-01T10:59:13.657219"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67592b6b4a20d1fc50f20730c4a178fab81252f01118620e050916b84ea031cd
3
+ size 2136