avoroshilov commited on
Commit
594970e
·
1 Parent(s): 03cfd3e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 288.67 +/- 17.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001CD73F8D9D0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001CD73F8DA60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001CD73F8DAF0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001CD73F8DB80>", "_build": "<function ActorCriticPolicy._build at 0x000001CD73F8DC10>", "forward": "<function ActorCriticPolicy.forward at 0x000001CD73F8DCA0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001CD73F8DD30>", "_predict": "<function ActorCriticPolicy._predict at 0x000001CD73F8DDC0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001CD73F8DE50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001CD73F8DEE0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001CD73F8DF70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001CD73F8F3C0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAB1Gh8uqKPVpdSdJKePFIT4U0+IoCMJaf2Exx8/J7wwfTK7Bq2pnOPvTy8Xn4vIssUTwOIb7xhzgaLlm7A82tUhqKH5LfZB2yBOtJbFd4hA+4AlAiTWQ8sPpjLFR29U5tyAkF0KvtmcbbBtWCAEJ0hZYhN9zA7L4ZmKGNiJTx/98VZds1BO1EJyao7Jk41Vc/hHUkvoIvE1DE3LgkZyvNTcjiI0ZixUdRcSjfK+0bj55MEWIOXQOTc7GjviGHJQ2rvE0et/jpPW7ugeSasJ2M68FmKikroY9MdTz9dYhjLQaPAkMYQYZ1nUIpXZA8KZTSP749Jqe6WvMJyDe0jqRSJznQZdwIEQXrEZgetrsE72FuY8ZLYednCts7kTcdjYUbjv35vdBfawiKKw2c+sCzDz6LTIfv4FIairNz5NOfzj1ozlbY9FNHMnIiZJOmSn/HGoFbae0fXFBn3VFWTD51BVXkaPHpV5xPczV+stTHXWq9RR/qDA3hAooWa2CcgtNejph3Q+FygvgEazOTq5MU1E/lvy0lDHlfaVD4AMujkIN9to6nyANJggS5zaopVCEEkWy119K362pmma/Gg9d6ZIDCYWW/oH4/1Awx34W8Cq6++BshgRraBMEv2zFofPX3qV8OKm8rcrE8aAKPinXL4TmJrzKRuexOM3nbV9bdqjjJ0M8W+hpTP34iBkpXXiFbsuJi/n9iNzYmWcxYxa+4PJWTzcNsk+veLRT/GoicUwRsT1DisBJ5jKu3EDxL4USDNbNk5VraIu51T2l16JvO4uefqFTiCbkZDsw0mYgQJ97ephcg6B5OunN3nx64zTL0iyqpXDUFfeP9MFwXbXi3s6liL408gLJXBpaEjS33a7p3Nys+ecQ/CZbPHn/Yz1Dq55yV/wsJilJ9hr//HxKIVUYe/lkdanW4USHp02WPFBwb1zHNIQVrNytMsnHCHficcHIwlgTyhIxFuO3lhOwlSeAVEN1PgYWGme4hdxuR00dza1aANED9nMI+aSgtKz+px/zKmg5sDRY0vPyRfOzyhV9oC1PtvvKnVkFhezUQZ84uNY7It9qWnB7z4VSJ60s8uBq8wW2QLV/tSxsnUUmxqlB/oxTABxIHMlLytI1NHga4TMBIk5lyVIiC7DeRCDe03sh5lSl6XEG0ceCMHmpjHzli/Z6aR3n2XRIODApWdvqEofY60L/S8EJwjZR9eUzwt+T+HGTGr5dL6VbcW1nzyS4zC4saKag+6m5pD82sTTMdLZYkHWQhQHIDmDXwcWI0kM974XVw3uYHKN7RigetOOTqoRnaeJdpohOK7yL3JmqR1Q1mhTRTegC6hW/V3LOiubej70vNpazSMxribSo9gByibeg0yKZKd1l1gokmvffm37L/vZP/6ZxCDB65L+kmwd3kBnUnwCLFwpt5cIngKXokPd7xWVGogoc39w+PcodZLvu4HKCJ3aQZqdagDmnpMeIi5OCZugKxM/AJ/HQw9khVzZiDGHZ9KGirnI4yZNRZTRWFi1SB/Swk1bEIlBnQ4l5sXAXH7LVgbqndGzvRxKjXd0/DzmXZu3Rf5qLpuusfFtRrwStF2pQO938PMNny4ZgiqfOVZkjTls2PM5yMHZ7uToe2MoR03tjwIMjK2D5HJSf7r6PD2tdmtGzDAl3FTi1E6895Psp9yn/OmUL9WB7N1HFOZWC8NY6quOqopud2+ioUvNQcRs4OdnVnFUnr4Tnw36Do8KlWjQSq2qVwOeW3lEZ5oKhxBgmsH+s2vJfMTdp9ILQCu4y4jEUU5+52UmOD3nf2UKUtPnjJpgcMdTRRTK2Dme3vd6yUaVFZzj/nonHWEpakOMHHHXnLOGRhtIu9EGjknyZjXthbpUvjtZ1mfUrLauGT1nqzT4MpJ9CXY/2MnnRxCddyC2cENCIPzuIQLsE0LSZbJvCWwnVQSREIqlc+pL/e4qt++B3/x/9kNMeHj9vdWyWpluicIFUP8TRW4Ldf/cYCea1aW4zNdgzIVAOvkYscGRSRd1CS9OaYmDfLeEjwBFMTP0SLpCXHnep5xirO8gzM1bODHqHMqqaxs7lP4kjnawqGIugPZ/LGL6HwxGUgME3TNSXzGlLkyAugBGxSFkgpZzIDfu2vHhxDJiNnnazrY11auCeJtL2OCaj9zC7/5q0PmGndoaHWcWXNnG+c8mtwqOt+3SdXgKB5CPO83rgCZkJOiezeV1BH6eumPxOnbyPO8iD0ejK/JE/43aZlAQ+E0gQQwfvpF/d73wqNuAH3/JyBRfIVvij9RdX+6MNvRFUNyQubmyXaPjctZ6Sip6wEH0cbY9yDbAUSpTZoF3QiCHSryoI6ffklGOPEcVNLW5fZ26dpCCu81vJLTmVucCcbE0bYY3OzlJbPlG7z5p6wpInOESKpotomdWAlKIRmqwwgJjvwRryCH+RcRGogh2eZ/t/ouoQUUnYocQoxfttx11vCpzMlizsYqCNihglH6YDFMvOwp/Yz7VZAsFP2bMlAi4dbCNPUNEsUYoC5H0kw95R/pElgCbvojEGA7AYJ3W39HMATFFg6J4RotMyLb4Kf/JgmoFwCTZ2Xiu/8LI/2QnJLy9Y/eBsgjt6C20fyrTH4w9dmZZ70tpIKlChgOhZMLuh432OJpP2Ao36cKo017yJna+T0yCbn261o8k0+1J0za6hx6Ny9EiIVnmzR5SzJuJbkg6vF+97DRtCX4dnt78iUg9RbqqAZDalCXkhYxjIOgt+pGLwWNOc9slArgTFFMnhNlI1gsykWZlfw5W8GYmJo2ajhUaXz/da1w4Nd/9i5iUwsIzozE2U+tmsYQRdyImZcZ1PnFk6E6kkhF8WCHqQEC5y3Roi3TuwGurevu/KgsoC1z8Mt7Cr/svl40Tf6CmE4cfbIDhFYDneESH+tReTwM1KSQaHFdavB57an8JWExpw/nflhacUiVg1SbGDoppEYkiXfpbIFmgEty/ZeRL0MVDgd4f+lT5NzzqhBSfOwAQ/1+eKjMQX8LRpo++K+Pa26mkokueoAKcTfAGoibdeuanLn7MuRWm5Jc14ZU6+gt+UejavYjzq9n2Q8J6/3nDRbkugML0gipn8K3wzgSwJetPWd80o3jvG586etY9vrwsO1y2c7dv0+9v05UhKh6DRTKWRuBHAnaSd/7zyNqiHLSSrp1p1cun94W/TQCDznD71Xr8ThM+qqGMD/rNggFdy5CeMAJh/3nsLhdofHL4YX3dcOWP03qTcMAXYcOt9r3Mac9WMykg69btQ8SD9kUrP/WpnFCXQbB6MQA5uX9Frfl216bkHSj+GgHQfu2jBgERk8T1L7ZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAbBSgyTBUOByVimwBgOQXo0LvHbARjcRyrvEInBJSRjU/Sinzib4vJojPW5DBB8tf0Ytb7yZMQ+OYSzNQ3vNOL3kkfBbmlgN3tnhS4NJbPEQrvvTygAKkL6xDYBB4TyJ0FxzvN0QJ4QIk2CRKmkwb654Gxs+EZ9ZslYeaqbAglInnB0upRnw5q8xU1MV4Imh7PR4ZiCsDlnTp6xcM9B9G8b0m9Vney1b8LXfWzJFdYXG9/GB3w7DSyqmP3Z+Ai594vwTxPPZkpvU8tO9QlPKDybf7QwrZlN69B4T/0sfWDr74bHSWA0/Mp9sW+CVDgxL/0jizAP+RpZp2ttL8ExwFtJKLMqlsvq6xjCEjCYmiiUyrPjHIQdIe4AbJrE5pSrMDTJunlGEYteo018gSePHhvBB3C0Maby3X+tyo5uhlL5yCMc1wEDT6vsuJ8sDw3Y++hXsbmWiDm4YjNwffFtbeqMkLnNZw6mYKFoV74siMtjTg34wIxN2HRwpoHh82VRRQgKdN4jQ+5jR5ya5o4I8lZhVT2018cK49heIKu37/8cKq28t7ZL3dGWFcoQrU2yxB9qK+MfvjfBVfYiKnsi2H+NjEXbnceqpjLSz2Q2QgXHuwAaXC2hC8ROGssCVwA2BzoQh1SUYzyl2IJxnRgEtMOYzXt3c2XEsZ0pd07QIw+5TkjC71U5zv8T8DdjJu4q3BihYFRttsHQZQG6t5OK5BEWCR0n8moHMS6OTzBJS/EnotewwHAX0GXl7jprsMr3/u8yLxB5kDDUPCmw3zoOro+IX2UaoXF+1F/w7boxki7nSJumt/tGQFIaon+eNVYphhFYkJt1mcLmh76bR0WtNNpd+dg3kwaJacM5i5tgyoNaEkD7kOJxOKjxmQidfurxDmDseLjt3ebaT09ymehHho+HaEdEXP6QI0QD6xKPWxi0W8YeRPk5uEmOqUGj6I0/Bm/s6jasBYG4nXBn9PdWJbRJcaknAyDy/IHQp9P2UIMTce9o6A+BC/cUcG/5nR5kyf6mFCQL6UUFOW3Ias4s9NLDiYA/jPk2ls3QxQjnZk/9CYvvnDZyd/46vivYMwumac1IRXQsTB6tjD76ocooEz1Ll7jhVbh8Zo39syndxV/Bh55e1UaiYYiBiSWZZUPB1Fc8QFEjIQH6FRpvZhXoEEqFWfc6HRnVCEBgNb64YphsjlOcRwisyWgJ+0CYhgrZt/R6vsEq2ttOdVrq7HpvqNThkry50kbG9pqVwGQGQDABy4mYFEUbvCym9EDIq0+XXK8PtrEmCa1yshQURDylnrpNGNnQvNVIT+epEaqPv8icVXyvTwAJkOErLahdEUlsY0dbE5SYP+112CeSS6efUQB/ShpJ2TR7i40eP7w1POgMRisri8B+ierzeCvbU4rdICfr0JJ8A78SnpRWGAhirNXDw5Nxol7ITmzxpaOtEin0tiDe0kkx2A9VvkLJFeprlNsG9V0CqthBDNfFXra6utMyDxAzgY2vQCXOawQy+E2q1YDvYb0QCntgEBNC1exXsIlvNARCAf0IwwDk3m5JUXs2LoO9NYHF3TwJTtJQJoaGqpOm4FzWj4yF5eL9kTBOa0q6OsoZfQYKbuxXE1Kcsge33MF2Ok/zNbcX8nnRYiDy2DhFJunsRgMwEOhJ2M09kVQJd+08Ne8Nz5hbWJkra/nA67ewQlS7Xx7qMQGMwDgbuD9KmuKjHAiYxR80vwkL8fqXDXK2Fc235gbxdWjO+l6erxq9kgzg2Kz3fP5uST8dAVSWacIKYbbHWeRtTaCHOJoylLIIP1fzEw8jsfqHccAYkoWdeoxjP6d6G8B504zmZgdo56766C6g1Hu6+utwuv+3+z5NVapvxlYxfwGV7NudBZ42ivkOUlXeeeAuP6kO1NNxBDj6452+NlgdPM6ZssCTZBnENaMm6B9QzZQs3FN1lllGGcvZIisebLQmmGuak6p+x+/178F0Zt7gf+AVAnkYm0M0u6gvtKEZcnD8lBWqppEJG6ikm6hYQz/T8WxQtL4EAYguoPBVYiCV+n+2rYAvgZDhJPF+l1Q4s5U1J3T/rwBamyD9fgc55uuQIg6VD1jYwlIGKfsvtAiRCaS2bGyXUiqeslXjPJ86ib1dCLmC5csNwS2k/B9V6kegeyDXGx21CAa3ZMKY3zYQmYojZ4eJSMWUOsfVpXC5nHYrBqG3L3+zTObWCRZC6iBvLycew/8rv1vNLqvhArgQzDzujwO1xI+uwNgzZ8rWYIhRRr6iEPPFVnA2maYOoWubQixQzGEtwP29pjptfs92HfeP53Up7lzK1rYLQvZxKYGJVfzxgBdzERjla+GRQUforigNHjYynyMDCmhqTj2yCxgtJ2aPDVm7Lfdk8ac2wAgFXglOdvUGWm4rO6927qrvFqGA9X40YzbRNEIj02pAZoVutyox4cEuBemirB/e6fCx6fd7sLzTIDDpbnqZcd/E3jy9RRJTIXoK16KSQ9XhpV82lSdV55/7yqkFHOaWZfCm0mLgaLcX7yNwrWeY8OqNDConU71EDbZOD8qYcVvdjgGaWmp9FejwycG1+0w7k7IwnUrvlzwSeG9mt0ktEMWhjtoDXsekLbZ7Dd5l4C5PV4mGTdCIUEaGiJlYzv6pOJM2mUeWtc9vXrZgSiHbBfXvuYC04jni/agn8JLkeZvwnBuje+5Lq/OJ+6S303BTjEbn5vRRzBadupr/dYWJ0vfk1AP4Mwud6AaTvOXhK9Yd1sgNOKwYIC4CXP2EwuMt93TVQgbJ0gMyIw2ZXlg7uo8riiEvvLmsDE1VdWjMjZWnRIPrZNVYqImwLHQGOf/ioDfNfsD+s4HhDKKau7S2kIukkDq1i6ccvlxkC7K3ZEa9cegeo/j2Mh2RHchrQed1nr7qyrrMLA6JsFtbr2Gz1urInb509Qr0qbrovT/2haoT1BwZ77QWHEX/ynjBZ5wIIzY0xakJ+DPKmKCK93LzytRiYRV+4Rh77nSIFTax1bBTl88rYHtzryhAEoIpEtKWDJ+ucy6WGxXLjy7RN+9EVYnRM9vNCVW5iQAJuAxEangRU1r9FWwHiPE9IwFmCZ4PG77hFTgmZ6kYa9BPbx8/irUwDYrgebDnz/8Zmf8kIY9jZT0LG/VT47Gb5p17heDpd2EmTDyT+bvKCvPxkwfVC7H+w3WlUI7UvgzWx1x5gmY+Bh0hTT8hAne8YCNapEI3HeNb2lE6mhkXrbhCtgrwui5KSwI5zZx5t6zrxImAA2eseA2ZV46RG4jU0UtoJ/98vXZU3MoAps0UBB6IbyM63Ry9RNlKfVnA+drnJf+GOSSNr/f/KNlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671928418950533700, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWEM6XFVzZXJzXHhwc1xBbmFjb25kYTNcZW52c1xkcmwtaHVnMlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBd80fXZ1cUCUhpRSlIwBbJRL2IwBdJRHQGDgqnWJ79h1fZQoaAZoCWgPQwjk9PV8zc1uQJSGlFKUaBVL0mgWR0Bg4xBsyi22dX2UKGgGaAloD0MIpKgz91BOcUCUhpRSlGgVS+VoFkdAYOMIcinpCHV9lChoBmgJaA9DCMuisIuiF3FAlIaUUpRoFUvYaBZHQGDkZ0r9VFR1fZQoaAZoCWgPQwjzID1FjiJwQJSGlFKUaBVLv2gWR0Bg5Y5PuXu3dX2UKGgGaAloD0MILjnulI41c0CUhpRSlGgVS+FoFkdAYOX974SHunV9lChoBmgJaA9DCIrpQqy+/nJAlIaUUpRoFUvfaBZHQGDmRbKRuCR1fZQoaAZoCWgPQwg+z582qslxQJSGlFKUaBVLtGgWR0Bg6Awwj+rEdX2UKGgGaAloD0MIymsldBeXbUCUhpRSlGgVS7ZoFkdAYOlrB0p3HXV9lChoBmgJaA9DCILEdvcAInNAlIaUUpRoFUvgaBZHQGDqeiBXjlx1fZQoaAZoCWgPQwi8Bn3prUN0QJSGlFKUaBVL1mgWR0Bg6sHjZL7GdX2UKGgGaAloD0MIC9XNxZ/ocUCUhpRSlGgVS9NoFkdAYOsxhUipvXV9lChoBmgJaA9DCHzWNVpOG3BAlIaUUpRoFUvAaBZHQGDrKYqoZQ51fZQoaAZoCWgPQwgZrg6A+MRxQJSGlFKUaBVL9mgWR0Bg6+joIOYqdX2UKGgGaAloD0MI3KD2WztwcECUhpRSlGgVS8hoFkdAYOxggow223V9lChoBmgJaA9DCKrv/KLEJXBAlIaUUpRoFUv8aBZHQGDsaHsTnJV1fZQoaAZoCWgPQwgktybdVpdyQJSGlFKUaBVL12gWR0Bg7m7J4jbBdX2UKGgGaAloD0MIEqW9wVfncECUhpRSlGgVS9FoFkdAYO5mz0HyE3V9lChoBmgJaA9DCIEk7NtJfDJAlIaUUpRoFUtmaBZHQGDuvoV2zOZ1fZQoaAZoCWgPQwhYIHpSZrVwQJSGlFKUaBVLvmgWR0Bg7r6FdszmdX2UKGgGaAloD0MId2hYjPqCcUCUhpRSlGgVS8RoFkdAYO+Vzp5eJHV9lChoBmgJaA9DCIo73uT3o3JAlIaUUpRoFUvHaBZHQGDwrOJLuhN1fZQoaAZoCWgPQwgSSl8IOelxQJSGlFKUaBVLzWgWR0Bg8JzvJA+qdX2UKGgGaAloD0MIjBGJQstcdECUhpRSlGgVS7doFkdAYPDcuanaWXV9lChoBmgJaA9DCLH7juGxK29AlIaUUpRoFUvHaBZHQGDyE7GNrCZ1fZQoaAZoCWgPQwh/3795cYtvQJSGlFKUaBVL02gWR0Bg8gu5BkZrdX2UKGgGaAloD0MImrSpusezckCUhpRSlGgVS8JoFkdAYPIDvmYBvXV9lChoBmgJaA9DCPDfvDjxMnNAlIaUUpRoFUvWaBZHQGDyA75mAb11fZQoaAZoCWgPQwjSqSufpT9xQJSGlFKUaBVL32gWR0Bg8gu5BkZrdX2UKGgGaAloD0MI071O6ktib0CUhpRSlGgVS79oFkdAYPOSbH6uXHV9lChoBmgJaA9DCKtbPSc9S3NAlIaUUpRoFUv5aBZHQGDz4igTRIB1fZQoaAZoCWgPQwhXX10VaABzQJSGlFKUaBVL82gWR0Bg9Pk7wKBvdX2UKGgGaAloD0MIC0W6n1OacUCUhpRSlGgVS8JoFkdAYPWwnpjc23V9lChoBmgJaA9DCHfbheY67m9AlIaUUpRoFUvOaBZHQGD3Tz/ZM+N1fZQoaAZoCWgPQwjeO2pMCKRpQJSGlFKUaBVN6ANoFkdAYPfmvnr6cnV9lChoBmgJaA9DCH14liAjgHFAlIaUUpRoFUvYaBZHQGD4NorWiDd1fZQoaAZoCWgPQwh3MGKfAExxQJSGlFKUaBVLtGgWR0Bg+F5jYqXodX2UKGgGaAloD0MIKBB2ipVvcUCUhpRSlGgVS9RoFkdAYPltfG+9J3V9lChoBmgJaA9DCFth+l5DmG9AlIaUUpRoFUu7aBZHQGD8ks8PnSx1fZQoaAZoCWgPQwiZ1NAGYI9yQJSGlFKUaBVLzGgWR0Bg/TJIUahpdX2UKGgGaAloD0MINSiaB7CFcUCUhpRSlGgVS8hoFkdAYP5RVIZqEnV9lChoBmgJaA9DCPFloghpX3FAlIaUUpRoFUvJaBZHQGD//+bVjI91fZQoaAZoCWgPQwgYCtgOBiFyQJSGlFKUaBVLuGgWR0BhALdJrcj8dX2UKGgGaAloD0MIeLgdGlb9cUCUhpRSlGgVS65oFkdAYQCnWJ79h3V9lChoBmgJaA9DCKmieJV1U3FAlIaUUpRoFUvJaBZHQGEBHvMKTjh1fZQoaAZoCWgPQwguyQG7GrtxQJSGlFKUaBVL72gWR0BhAy00FbFCdX2UKGgGaAloD0MIBhGpaRdGc0CUhpRSlGgVS9loFkdAYQOkzoEB83V9lChoBmgJaA9DCAStwJBV9HFAlIaUUpRoFUvRaBZHQGED1KXfIjp1fZQoaAZoCWgPQwjjUL8L2wZxQJSGlFKUaBVLzGgWR0BhA9Sl3yI6dX2UKGgGaAloD0MIWYrkKwFgcECUhpRSlGgVS+BoFkdAYQSEEC/47HV9lChoBmgJaA9DCD7KiAuAdnJAlIaUUpRoFUvfaBZHQGEFkyk9ECx1fZQoaAZoCWgPQwiGV5I8l+9xQJSGlFKUaBVLwWgWR0BhBfLaEi+tdX2UKGgGaAloD0MIqwX2mMixb0CUhpRSlGgVS8loFkdAYQZqcmShanV9lChoBmgJaA9DCKSoM/eQqHFAlIaUUpRoFUvdaBZHQGEGmknCwbF1fZQoaAZoCWgPQwjgZYaNsohxQJSGlFKUaBVLvmgWR0BhBtIbwSamdX2UKGgGaAloD0MICYfe4iEWc0CUhpRSlGgVS8JoFkdAYQbKISDh+HV9lChoBmgJaA9DCCvAd5s3l3FAlIaUUpRoFUvXaBZHQGEGyiEg4fh1fZQoaAZoCWgPQwhd+SzPQ4twQJSGlFKUaBVL42gWR0BhB2maYu01dX2UKGgGaAloD0MIPGh23dsKcUCUhpRSlGgVS71oFkdAYQf5IH1OCXV9lChoBmgJaA9DCAq9/iQ+bHNAlIaUUpRoFUvnaBZHQGEKfvv0AcV1fZQoaAZoCWgPQwichqjCXxtxQJSGlFKUaBVLtWgWR0BhDF1jiGWVdX2UKGgGaAloD0MIjKIHPkZFckCUhpRSlGgVS9FoFkdAYQ8bEP1+RnV9lChoBmgJaA9DCLN8XYb/V3BAlIaUUpRoFUvCaBZHQGEQMiKR+0B1fZQoaAZoCWgPQwicGmg+Z8pvQJSGlFKUaBVLt2gWR0BhERFmWdEtdX2UKGgGaAloD0MI+z2xTpXYcUCUhpRSlGgVS7BoFkdAYRIAmzByj3V9lChoBmgJaA9DCIyDS8ec425AlIaUUpRoFUvZaBZHQGER+KCQLeB1fZQoaAZoCWgPQwhJZ2DkJZZxQJSGlFKUaBVL0mgWR0BhEr/4qPOqdX2UKGgGaAloD0MICM2ue2sJckCUhpRSlGgVS8hoFkdAYRLH8TBZZHV9lChoBmgJaA9DCG7ajNPQNnJAlIaUUpRoFUu7aBZHQGEVfaQFLWZ1fZQoaAZoCWgPQwjo3VhQmElzQJSGlFKUaBVL02gWR0BhFYWcjJMhdX2UKGgGaAloD0MIdJXurvP8cUCUhpRSlGgVS8hoFkdAYRcMUAT7EnV9lChoBmgJaA9DCCYbD7YYIXJAlIaUUpRoFUvDaBZHQGEZYlQdjoZ1fZQoaAZoCWgPQwg826M33IhxQJSGlFKUaBVLzWgWR0BhGdnuiN83dX2UKGgGaAloD0MILVqAtlVqbkCUhpRSlGgVS8VoFkdAYRoZuQ6p53V9lChoBmgJaA9DCL5Nf/ZjFnFAlIaUUpRoFUvOaBZHQGEaEcCHRCx1fZQoaAZoCWgPQwiitDf4wkJyQJSGlFKUaBVL12gWR0BhGwjt5UtJdX2UKGgGaAloD0MI07zjFN24cUCUhpRSlGgVS+9oFkdAYRvwKjSG8HV9lChoBmgJaA9DCCdO7nfoGHFAlIaUUpRoFUvjaBZHQGEcJ/oaDPJ1fZQoaAZoCWgPQwgrwk1GlQpxQJSGlFKUaBVLuWgWR0BhHF/J/5LzdX2UKGgGaAloD0MIZ5lFKDaRcUCUhpRSlGgVS8BoFkdAYRxfyf+S83V9lChoBmgJaA9DCJ2dDI4SenNAlIaUUpRoFUvUaBZHQGEdtqYZ2p11fZQoaAZoCWgPQwit9rAXyqhwQJSGlFKUaBVLz2gWR0BhHpXp4bCKdX2UKGgGaAloD0MICJRNucLFcECUhpRSlGgVS9BoFkdAYR7FwT/Q0HV9lChoBmgJaA9DCB7dCItKL3JAlIaUUpRoFUvFaBZHQGEfnQpnYg91fZQoaAZoCWgPQwha8+MvLTVxQJSGlFKUaBVLzWgWR0BhH40ZWJaadX2UKGgGaAloD0MIM/ynG+i7cUCUhpRSlGgVS+toFkdAYR/M4cWCVnV9lChoBmgJaA9DCD1lNV3PfHFAlIaUUpRoFUvCaBZHQGEg2/rSmZV1fZQoaAZoCWgPQwhX7gVmhXNxQJSGlFKUaBVL42gWR0BhISO938oAdX2UKGgGaAloD0MIbxEY65ukcUCUhpRSlGgVS71oFkdAYSIy1uzhP3V9lChoBmgJaA9DCPKyJha4O3JAlIaUUpRoFUvkaBZHQGEiio0hvBJ1fZQoaAZoCWgPQwjY1HlU/FpvQJSGlFKUaBVLvmgWR0BhI2nO0LMLdX2UKGgGaAloD0MIP8kdNlG6cECUhpRSlGgVS9JoFkdAYSPReC04R3V9lChoBmgJaA9DCH44SIjyeHJAlIaUUpRoFUviaBZHQGEkaPbO/tZ1fZQoaAZoCWgPQwgeUaG6OStxQJSGlFKUaBVL6GgWR0BhJLC53C9AdX2UKGgGaAloD0MIVcA9z5/xckCUhpRSlGgVS+loFkdAYSXvqkdmx3V9lChoBmgJaA9DCFYMVwcAanJAlIaUUpRoFUu8aBZHQGEmL3TNMXd1fZQoaAZoCWgPQwjW5CmraVRxQJSGlFKUaBVL0WgWR0BhJi90zTF3dX2UKGgGaAloD0MIOwDirh4bckCUhpRSlGgVS+1oFkdAYSbG8274BXV9lChoBmgJaA9DCJsEb0ijkXFAlIaUUpRoFUu8aBZHQGEpnIp6QeV1fZQoaAZoCWgPQwiD3htDAH9wQJSGlFKUaBVLymgWR0BhKuN1hb4bdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3088, "n_steps": 4096, "gamma": 0.999, "gae_lambda": 1.0, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWEM6XFVzZXJzXHhwc1xBbmFjb25kYTNcZW52c1xkcmwtaHVnMlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.9.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a580ff93e5754bb17867595edbafecbaedc23e0da8f729317c07383daa6670f5
3
+ size 153480
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x000001CD73F8D9D0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001CD73F8DA60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001CD73F8DAF0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001CD73F8DB80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x000001CD73F8DC10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x000001CD73F8DCA0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001CD73F8DD30>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x000001CD73F8DDC0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001CD73F8DE50>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001CD73F8DEE0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001CD73F8DF70>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x000001CD73F8F3C0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAB1Gh8uqKPVpdSdJKePFIT4U0+IoCMJaf2Exx8/J7wwfTK7Bq2pnOPvTy8Xn4vIssUTwOIb7xhzgaLlm7A82tUhqKH5LfZB2yBOtJbFd4hA+4AlAiTWQ8sPpjLFR29U5tyAkF0KvtmcbbBtWCAEJ0hZYhN9zA7L4ZmKGNiJTx/98VZds1BO1EJyao7Jk41Vc/hHUkvoIvE1DE3LgkZyvNTcjiI0ZixUdRcSjfK+0bj55MEWIOXQOTc7GjviGHJQ2rvE0et/jpPW7ugeSasJ2M68FmKikroY9MdTz9dYhjLQaPAkMYQYZ1nUIpXZA8KZTSP749Jqe6WvMJyDe0jqRSJznQZdwIEQXrEZgetrsE72FuY8ZLYednCts7kTcdjYUbjv35vdBfawiKKw2c+sCzDz6LTIfv4FIairNz5NOfzj1ozlbY9FNHMnIiZJOmSn/HGoFbae0fXFBn3VFWTD51BVXkaPHpV5xPczV+stTHXWq9RR/qDA3hAooWa2CcgtNejph3Q+FygvgEazOTq5MU1E/lvy0lDHlfaVD4AMujkIN9to6nyANJggS5zaopVCEEkWy119K362pmma/Gg9d6ZIDCYWW/oH4/1Awx34W8Cq6++BshgRraBMEv2zFofPX3qV8OKm8rcrE8aAKPinXL4TmJrzKRuexOM3nbV9bdqjjJ0M8W+hpTP34iBkpXXiFbsuJi/n9iNzYmWcxYxa+4PJWTzcNsk+veLRT/GoicUwRsT1DisBJ5jKu3EDxL4USDNbNk5VraIu51T2l16JvO4uefqFTiCbkZDsw0mYgQJ97ephcg6B5OunN3nx64zTL0iyqpXDUFfeP9MFwXbXi3s6liL408gLJXBpaEjS33a7p3Nys+ecQ/CZbPHn/Yz1Dq55yV/wsJilJ9hr//HxKIVUYe/lkdanW4USHp02WPFBwb1zHNIQVrNytMsnHCHficcHIwlgTyhIxFuO3lhOwlSeAVEN1PgYWGme4hdxuR00dza1aANED9nMI+aSgtKz+px/zKmg5sDRY0vPyRfOzyhV9oC1PtvvKnVkFhezUQZ84uNY7It9qWnB7z4VSJ60s8uBq8wW2QLV/tSxsnUUmxqlB/oxTABxIHMlLytI1NHga4TMBIk5lyVIiC7DeRCDe03sh5lSl6XEG0ceCMHmpjHzli/Z6aR3n2XRIODApWdvqEofY60L/S8EJwjZR9eUzwt+T+HGTGr5dL6VbcW1nzyS4zC4saKag+6m5pD82sTTMdLZYkHWQhQHIDmDXwcWI0kM974XVw3uYHKN7RigetOOTqoRnaeJdpohOK7yL3JmqR1Q1mhTRTegC6hW/V3LOiubej70vNpazSMxribSo9gByibeg0yKZKd1l1gokmvffm37L/vZP/6ZxCDB65L+kmwd3kBnUnwCLFwpt5cIngKXokPd7xWVGogoc39w+PcodZLvu4HKCJ3aQZqdagDmnpMeIi5OCZugKxM/AJ/HQw9khVzZiDGHZ9KGirnI4yZNRZTRWFi1SB/Swk1bEIlBnQ4l5sXAXH7LVgbqndGzvRxKjXd0/DzmXZu3Rf5qLpuusfFtRrwStF2pQO938PMNny4ZgiqfOVZkjTls2PM5yMHZ7uToe2MoR03tjwIMjK2D5HJSf7r6PD2tdmtGzDAl3FTi1E6895Psp9yn/OmUL9WB7N1HFOZWC8NY6quOqopud2+ioUvNQcRs4OdnVnFUnr4Tnw36Do8KlWjQSq2qVwOeW3lEZ5oKhxBgmsH+s2vJfMTdp9ILQCu4y4jEUU5+52UmOD3nf2UKUtPnjJpgcMdTRRTK2Dme3vd6yUaVFZzj/nonHWEpakOMHHHXnLOGRhtIu9EGjknyZjXthbpUvjtZ1mfUrLauGT1nqzT4MpJ9CXY/2MnnRxCddyC2cENCIPzuIQLsE0LSZbJvCWwnVQSREIqlc+pL/e4qt++B3/x/9kNMeHj9vdWyWpluicIFUP8TRW4Ldf/cYCea1aW4zNdgzIVAOvkYscGRSRd1CS9OaYmDfLeEjwBFMTP0SLpCXHnep5xirO8gzM1bODHqHMqqaxs7lP4kjnawqGIugPZ/LGL6HwxGUgME3TNSXzGlLkyAugBGxSFkgpZzIDfu2vHhxDJiNnnazrY11auCeJtL2OCaj9zC7/5q0PmGndoaHWcWXNnG+c8mtwqOt+3SdXgKB5CPO83rgCZkJOiezeV1BH6eumPxOnbyPO8iD0ejK/JE/43aZlAQ+E0gQQwfvpF/d73wqNuAH3/JyBRfIVvij9RdX+6MNvRFUNyQubmyXaPjctZ6Sip6wEH0cbY9yDbAUSpTZoF3QiCHSryoI6ffklGOPEcVNLW5fZ26dpCCu81vJLTmVucCcbE0bYY3OzlJbPlG7z5p6wpInOESKpotomdWAlKIRmqwwgJjvwRryCH+RcRGogh2eZ/t/ouoQUUnYocQoxfttx11vCpzMlizsYqCNihglH6YDFMvOwp/Yz7VZAsFP2bMlAi4dbCNPUNEsUYoC5H0kw95R/pElgCbvojEGA7AYJ3W39HMATFFg6J4RotMyLb4Kf/JgmoFwCTZ2Xiu/8LI/2QnJLy9Y/eBsgjt6C20fyrTH4w9dmZZ70tpIKlChgOhZMLuh432OJpP2Ao36cKo017yJna+T0yCbn261o8k0+1J0za6hx6Ny9EiIVnmzR5SzJuJbkg6vF+97DRtCX4dnt78iUg9RbqqAZDalCXkhYxjIOgt+pGLwWNOc9slArgTFFMnhNlI1gsykWZlfw5W8GYmJo2ajhUaXz/da1w4Nd/9i5iUwsIzozE2U+tmsYQRdyImZcZ1PnFk6E6kkhF8WCHqQEC5y3Roi3TuwGurevu/KgsoC1z8Mt7Cr/svl40Tf6CmE4cfbIDhFYDneESH+tReTwM1KSQaHFdavB57an8JWExpw/nflhacUiVg1SbGDoppEYkiXfpbIFmgEty/ZeRL0MVDgd4f+lT5NzzqhBSfOwAQ/1+eKjMQX8LRpo++K+Pa26mkokueoAKcTfAGoibdeuanLn7MuRWm5Jc14ZU6+gt+UejavYjzq9n2Q8J6/3nDRbkugML0gipn8K3wzgSwJetPWd80o3jvG586etY9vrwsO1y2c7dv0+9v05UhKh6DRTKWRuBHAnaSd/7zyNqiHLSSrp1p1cun94W/TQCDznD71Xr8ThM+qqGMD/rNggFdy5CeMAJh/3nsLhdofHL4YX3dcOWP03qTcMAXYcOt9r3Mac9WMykg69btQ8SD9kUrP/WpnFCXQbB6MQA5uX9Frfl216bkHSj+GgHQfu2jBgERk8T1L7ZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": "RandomState(MT19937)"
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAbBSgyTBUOByVimwBgOQXo0LvHbARjcRyrvEInBJSRjU/Sinzib4vJojPW5DBB8tf0Ytb7yZMQ+OYSzNQ3vNOL3kkfBbmlgN3tnhS4NJbPEQrvvTygAKkL6xDYBB4TyJ0FxzvN0QJ4QIk2CRKmkwb654Gxs+EZ9ZslYeaqbAglInnB0upRnw5q8xU1MV4Imh7PR4ZiCsDlnTp6xcM9B9G8b0m9Vney1b8LXfWzJFdYXG9/GB3w7DSyqmP3Z+Ai594vwTxPPZkpvU8tO9QlPKDybf7QwrZlN69B4T/0sfWDr74bHSWA0/Mp9sW+CVDgxL/0jizAP+RpZp2ttL8ExwFtJKLMqlsvq6xjCEjCYmiiUyrPjHIQdIe4AbJrE5pSrMDTJunlGEYteo018gSePHhvBB3C0Maby3X+tyo5uhlL5yCMc1wEDT6vsuJ8sDw3Y++hXsbmWiDm4YjNwffFtbeqMkLnNZw6mYKFoV74siMtjTg34wIxN2HRwpoHh82VRRQgKdN4jQ+5jR5ya5o4I8lZhVT2018cK49heIKu37/8cKq28t7ZL3dGWFcoQrU2yxB9qK+MfvjfBVfYiKnsi2H+NjEXbnceqpjLSz2Q2QgXHuwAaXC2hC8ROGssCVwA2BzoQh1SUYzyl2IJxnRgEtMOYzXt3c2XEsZ0pd07QIw+5TkjC71U5zv8T8DdjJu4q3BihYFRttsHQZQG6t5OK5BEWCR0n8moHMS6OTzBJS/EnotewwHAX0GXl7jprsMr3/u8yLxB5kDDUPCmw3zoOro+IX2UaoXF+1F/w7boxki7nSJumt/tGQFIaon+eNVYphhFYkJt1mcLmh76bR0WtNNpd+dg3kwaJacM5i5tgyoNaEkD7kOJxOKjxmQidfurxDmDseLjt3ebaT09ymehHho+HaEdEXP6QI0QD6xKPWxi0W8YeRPk5uEmOqUGj6I0/Bm/s6jasBYG4nXBn9PdWJbRJcaknAyDy/IHQp9P2UIMTce9o6A+BC/cUcG/5nR5kyf6mFCQL6UUFOW3Ias4s9NLDiYA/jPk2ls3QxQjnZk/9CYvvnDZyd/46vivYMwumac1IRXQsTB6tjD76ocooEz1Ll7jhVbh8Zo39syndxV/Bh55e1UaiYYiBiSWZZUPB1Fc8QFEjIQH6FRpvZhXoEEqFWfc6HRnVCEBgNb64YphsjlOcRwisyWgJ+0CYhgrZt/R6vsEq2ttOdVrq7HpvqNThkry50kbG9pqVwGQGQDABy4mYFEUbvCym9EDIq0+XXK8PtrEmCa1yshQURDylnrpNGNnQvNVIT+epEaqPv8icVXyvTwAJkOErLahdEUlsY0dbE5SYP+112CeSS6efUQB/ShpJ2TR7i40eP7w1POgMRisri8B+ierzeCvbU4rdICfr0JJ8A78SnpRWGAhirNXDw5Nxol7ITmzxpaOtEin0tiDe0kkx2A9VvkLJFeprlNsG9V0CqthBDNfFXra6utMyDxAzgY2vQCXOawQy+E2q1YDvYb0QCntgEBNC1exXsIlvNARCAf0IwwDk3m5JUXs2LoO9NYHF3TwJTtJQJoaGqpOm4FzWj4yF5eL9kTBOa0q6OsoZfQYKbuxXE1Kcsge33MF2Ok/zNbcX8nnRYiDy2DhFJunsRgMwEOhJ2M09kVQJd+08Ne8Nz5hbWJkra/nA67ewQlS7Xx7qMQGMwDgbuD9KmuKjHAiYxR80vwkL8fqXDXK2Fc235gbxdWjO+l6erxq9kgzg2Kz3fP5uST8dAVSWacIKYbbHWeRtTaCHOJoylLIIP1fzEw8jsfqHccAYkoWdeoxjP6d6G8B504zmZgdo56766C6g1Hu6+utwuv+3+z5NVapvxlYxfwGV7NudBZ42ivkOUlXeeeAuP6kO1NNxBDj6452+NlgdPM6ZssCTZBnENaMm6B9QzZQs3FN1lllGGcvZIisebLQmmGuak6p+x+/178F0Zt7gf+AVAnkYm0M0u6gvtKEZcnD8lBWqppEJG6ikm6hYQz/T8WxQtL4EAYguoPBVYiCV+n+2rYAvgZDhJPF+l1Q4s5U1J3T/rwBamyD9fgc55uuQIg6VD1jYwlIGKfsvtAiRCaS2bGyXUiqeslXjPJ86ib1dCLmC5csNwS2k/B9V6kegeyDXGx21CAa3ZMKY3zYQmYojZ4eJSMWUOsfVpXC5nHYrBqG3L3+zTObWCRZC6iBvLycew/8rv1vNLqvhArgQzDzujwO1xI+uwNgzZ8rWYIhRRr6iEPPFVnA2maYOoWubQixQzGEtwP29pjptfs92HfeP53Up7lzK1rYLQvZxKYGJVfzxgBdzERjla+GRQUforigNHjYynyMDCmhqTj2yCxgtJ2aPDVm7Lfdk8ac2wAgFXglOdvUGWm4rO6927qrvFqGA9X40YzbRNEIj02pAZoVutyox4cEuBemirB/e6fCx6fd7sLzTIDDpbnqZcd/E3jy9RRJTIXoK16KSQ9XhpV82lSdV55/7yqkFHOaWZfCm0mLgaLcX7yNwrWeY8OqNDConU71EDbZOD8qYcVvdjgGaWmp9FejwycG1+0w7k7IwnUrvlzwSeG9mt0ktEMWhjtoDXsekLbZ7Dd5l4C5PV4mGTdCIUEaGiJlYzv6pOJM2mUeWtc9vXrZgSiHbBfXvuYC04jni/agn8JLkeZvwnBuje+5Lq/OJ+6S303BTjEbn5vRRzBadupr/dYWJ0vfk1AP4Mwud6AaTvOXhK9Yd1sgNOKwYIC4CXP2EwuMt93TVQgbJ0gMyIw2ZXlg7uo8riiEvvLmsDE1VdWjMjZWnRIPrZNVYqImwLHQGOf/ioDfNfsD+s4HhDKKau7S2kIukkDq1i6ccvlxkC7K3ZEa9cegeo/j2Mh2RHchrQed1nr7qyrrMLA6JsFtbr2Gz1urInb509Qr0qbrovT/2haoT1BwZ77QWHEX/ynjBZ5wIIzY0xakJ+DPKmKCK93LzytRiYRV+4Rh77nSIFTax1bBTl88rYHtzryhAEoIpEtKWDJ+ucy6WGxXLjy7RN+9EVYnRM9vNCVW5iQAJuAxEangRU1r9FWwHiPE9IwFmCZ4PG77hFTgmZ6kYa9BPbx8/irUwDYrgebDnz/8Zmf8kIY9jZT0LG/VT47Gb5p17heDpd2EmTDyT+bvKCvPxkwfVC7H+w3WlUI7UvgzWx1x5gmY+Bh0hTT8hAne8YCNapEI3HeNb2lE6mhkXrbhCtgrwui5KSwI5zZx5t6zrxImAA2eseA2ZV46RG4jU0UtoJ/98vXZU3MoAps0UBB6IbyM63Ry9RNlKfVnA+drnJf+GOSSNr/f/KNlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 1048576,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671928418950533700,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWEM6XFVzZXJzXHhwc1xBbmFjb25kYTNcZW52c1xkcmwtaHVnMlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.04857599999999995,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBd80fXZ1cUCUhpRSlIwBbJRL2IwBdJRHQGDgqnWJ79h1fZQoaAZoCWgPQwjk9PV8zc1uQJSGlFKUaBVL0mgWR0Bg4xBsyi22dX2UKGgGaAloD0MIpKgz91BOcUCUhpRSlGgVS+VoFkdAYOMIcinpCHV9lChoBmgJaA9DCMuisIuiF3FAlIaUUpRoFUvYaBZHQGDkZ0r9VFR1fZQoaAZoCWgPQwjzID1FjiJwQJSGlFKUaBVLv2gWR0Bg5Y5PuXu3dX2UKGgGaAloD0MILjnulI41c0CUhpRSlGgVS+FoFkdAYOX974SHunV9lChoBmgJaA9DCIrpQqy+/nJAlIaUUpRoFUvfaBZHQGDmRbKRuCR1fZQoaAZoCWgPQwg+z582qslxQJSGlFKUaBVLtGgWR0Bg6Awwj+rEdX2UKGgGaAloD0MIymsldBeXbUCUhpRSlGgVS7ZoFkdAYOlrB0p3HXV9lChoBmgJaA9DCILEdvcAInNAlIaUUpRoFUvgaBZHQGDqeiBXjlx1fZQoaAZoCWgPQwi8Bn3prUN0QJSGlFKUaBVL1mgWR0Bg6sHjZL7GdX2UKGgGaAloD0MIC9XNxZ/ocUCUhpRSlGgVS9NoFkdAYOsxhUipvXV9lChoBmgJaA9DCHzWNVpOG3BAlIaUUpRoFUvAaBZHQGDrKYqoZQ51fZQoaAZoCWgPQwgZrg6A+MRxQJSGlFKUaBVL9mgWR0Bg6+joIOYqdX2UKGgGaAloD0MI3KD2WztwcECUhpRSlGgVS8hoFkdAYOxggow223V9lChoBmgJaA9DCKrv/KLEJXBAlIaUUpRoFUv8aBZHQGDsaHsTnJV1fZQoaAZoCWgPQwgktybdVpdyQJSGlFKUaBVL12gWR0Bg7m7J4jbBdX2UKGgGaAloD0MIEqW9wVfncECUhpRSlGgVS9FoFkdAYO5mz0HyE3V9lChoBmgJaA9DCIEk7NtJfDJAlIaUUpRoFUtmaBZHQGDuvoV2zOZ1fZQoaAZoCWgPQwhYIHpSZrVwQJSGlFKUaBVLvmgWR0Bg7r6FdszmdX2UKGgGaAloD0MId2hYjPqCcUCUhpRSlGgVS8RoFkdAYO+Vzp5eJHV9lChoBmgJaA9DCIo73uT3o3JAlIaUUpRoFUvHaBZHQGDwrOJLuhN1fZQoaAZoCWgPQwgSSl8IOelxQJSGlFKUaBVLzWgWR0Bg8JzvJA+qdX2UKGgGaAloD0MIjBGJQstcdECUhpRSlGgVS7doFkdAYPDcuanaWXV9lChoBmgJaA9DCLH7juGxK29AlIaUUpRoFUvHaBZHQGDyE7GNrCZ1fZQoaAZoCWgPQwh/3795cYtvQJSGlFKUaBVL02gWR0Bg8gu5BkZrdX2UKGgGaAloD0MImrSpusezckCUhpRSlGgVS8JoFkdAYPIDvmYBvXV9lChoBmgJaA9DCPDfvDjxMnNAlIaUUpRoFUvWaBZHQGDyA75mAb11fZQoaAZoCWgPQwjSqSufpT9xQJSGlFKUaBVL32gWR0Bg8gu5BkZrdX2UKGgGaAloD0MI071O6ktib0CUhpRSlGgVS79oFkdAYPOSbH6uXHV9lChoBmgJaA9DCKtbPSc9S3NAlIaUUpRoFUv5aBZHQGDz4igTRIB1fZQoaAZoCWgPQwhXX10VaABzQJSGlFKUaBVL82gWR0Bg9Pk7wKBvdX2UKGgGaAloD0MIC0W6n1OacUCUhpRSlGgVS8JoFkdAYPWwnpjc23V9lChoBmgJaA9DCHfbheY67m9AlIaUUpRoFUvOaBZHQGD3Tz/ZM+N1fZQoaAZoCWgPQwjeO2pMCKRpQJSGlFKUaBVN6ANoFkdAYPfmvnr6cnV9lChoBmgJaA9DCH14liAjgHFAlIaUUpRoFUvYaBZHQGD4NorWiDd1fZQoaAZoCWgPQwh3MGKfAExxQJSGlFKUaBVLtGgWR0Bg+F5jYqXodX2UKGgGaAloD0MIKBB2ipVvcUCUhpRSlGgVS9RoFkdAYPltfG+9J3V9lChoBmgJaA9DCFth+l5DmG9AlIaUUpRoFUu7aBZHQGD8ks8PnSx1fZQoaAZoCWgPQwiZ1NAGYI9yQJSGlFKUaBVLzGgWR0Bg/TJIUahpdX2UKGgGaAloD0MINSiaB7CFcUCUhpRSlGgVS8hoFkdAYP5RVIZqEnV9lChoBmgJaA9DCPFloghpX3FAlIaUUpRoFUvJaBZHQGD//+bVjI91fZQoaAZoCWgPQwgYCtgOBiFyQJSGlFKUaBVLuGgWR0BhALdJrcj8dX2UKGgGaAloD0MIeLgdGlb9cUCUhpRSlGgVS65oFkdAYQCnWJ79h3V9lChoBmgJaA9DCKmieJV1U3FAlIaUUpRoFUvJaBZHQGEBHvMKTjh1fZQoaAZoCWgPQwguyQG7GrtxQJSGlFKUaBVL72gWR0BhAy00FbFCdX2UKGgGaAloD0MIBhGpaRdGc0CUhpRSlGgVS9loFkdAYQOkzoEB83V9lChoBmgJaA9DCAStwJBV9HFAlIaUUpRoFUvRaBZHQGED1KXfIjp1fZQoaAZoCWgPQwjjUL8L2wZxQJSGlFKUaBVLzGgWR0BhA9Sl3yI6dX2UKGgGaAloD0MIWYrkKwFgcECUhpRSlGgVS+BoFkdAYQSEEC/47HV9lChoBmgJaA9DCD7KiAuAdnJAlIaUUpRoFUvfaBZHQGEFkyk9ECx1fZQoaAZoCWgPQwiGV5I8l+9xQJSGlFKUaBVLwWgWR0BhBfLaEi+tdX2UKGgGaAloD0MIqwX2mMixb0CUhpRSlGgVS8loFkdAYQZqcmShanV9lChoBmgJaA9DCKSoM/eQqHFAlIaUUpRoFUvdaBZHQGEGmknCwbF1fZQoaAZoCWgPQwjgZYaNsohxQJSGlFKUaBVLvmgWR0BhBtIbwSamdX2UKGgGaAloD0MICYfe4iEWc0CUhpRSlGgVS8JoFkdAYQbKISDh+HV9lChoBmgJaA9DCCvAd5s3l3FAlIaUUpRoFUvXaBZHQGEGyiEg4fh1fZQoaAZoCWgPQwhd+SzPQ4twQJSGlFKUaBVL42gWR0BhB2maYu01dX2UKGgGaAloD0MIPGh23dsKcUCUhpRSlGgVS71oFkdAYQf5IH1OCXV9lChoBmgJaA9DCAq9/iQ+bHNAlIaUUpRoFUvnaBZHQGEKfvv0AcV1fZQoaAZoCWgPQwichqjCXxtxQJSGlFKUaBVLtWgWR0BhDF1jiGWVdX2UKGgGaAloD0MIjKIHPkZFckCUhpRSlGgVS9FoFkdAYQ8bEP1+RnV9lChoBmgJaA9DCLN8XYb/V3BAlIaUUpRoFUvCaBZHQGEQMiKR+0B1fZQoaAZoCWgPQwicGmg+Z8pvQJSGlFKUaBVLt2gWR0BhERFmWdEtdX2UKGgGaAloD0MI+z2xTpXYcUCUhpRSlGgVS7BoFkdAYRIAmzByj3V9lChoBmgJaA9DCIyDS8ec425AlIaUUpRoFUvZaBZHQGER+KCQLeB1fZQoaAZoCWgPQwhJZ2DkJZZxQJSGlFKUaBVL0mgWR0BhEr/4qPOqdX2UKGgGaAloD0MICM2ue2sJckCUhpRSlGgVS8hoFkdAYRLH8TBZZHV9lChoBmgJaA9DCG7ajNPQNnJAlIaUUpRoFUu7aBZHQGEVfaQFLWZ1fZQoaAZoCWgPQwjo3VhQmElzQJSGlFKUaBVL02gWR0BhFYWcjJMhdX2UKGgGaAloD0MIdJXurvP8cUCUhpRSlGgVS8hoFkdAYRcMUAT7EnV9lChoBmgJaA9DCCYbD7YYIXJAlIaUUpRoFUvDaBZHQGEZYlQdjoZ1fZQoaAZoCWgPQwg826M33IhxQJSGlFKUaBVLzWgWR0BhGdnuiN83dX2UKGgGaAloD0MILVqAtlVqbkCUhpRSlGgVS8VoFkdAYRoZuQ6p53V9lChoBmgJaA9DCL5Nf/ZjFnFAlIaUUpRoFUvOaBZHQGEaEcCHRCx1fZQoaAZoCWgPQwiitDf4wkJyQJSGlFKUaBVL12gWR0BhGwjt5UtJdX2UKGgGaAloD0MI07zjFN24cUCUhpRSlGgVS+9oFkdAYRvwKjSG8HV9lChoBmgJaA9DCCdO7nfoGHFAlIaUUpRoFUvjaBZHQGEcJ/oaDPJ1fZQoaAZoCWgPQwgrwk1GlQpxQJSGlFKUaBVLuWgWR0BhHF/J/5LzdX2UKGgGaAloD0MIZ5lFKDaRcUCUhpRSlGgVS8BoFkdAYRxfyf+S83V9lChoBmgJaA9DCJ2dDI4SenNAlIaUUpRoFUvUaBZHQGEdtqYZ2p11fZQoaAZoCWgPQwit9rAXyqhwQJSGlFKUaBVLz2gWR0BhHpXp4bCKdX2UKGgGaAloD0MICJRNucLFcECUhpRSlGgVS9BoFkdAYR7FwT/Q0HV9lChoBmgJaA9DCB7dCItKL3JAlIaUUpRoFUvFaBZHQGEfnQpnYg91fZQoaAZoCWgPQwha8+MvLTVxQJSGlFKUaBVLzWgWR0BhH40ZWJaadX2UKGgGaAloD0MIM/ynG+i7cUCUhpRSlGgVS+toFkdAYR/M4cWCVnV9lChoBmgJaA9DCD1lNV3PfHFAlIaUUpRoFUvCaBZHQGEg2/rSmZV1fZQoaAZoCWgPQwhX7gVmhXNxQJSGlFKUaBVL42gWR0BhISO938oAdX2UKGgGaAloD0MIbxEY65ukcUCUhpRSlGgVS71oFkdAYSIy1uzhP3V9lChoBmgJaA9DCPKyJha4O3JAlIaUUpRoFUvkaBZHQGEiio0hvBJ1fZQoaAZoCWgPQwjY1HlU/FpvQJSGlFKUaBVLvmgWR0BhI2nO0LMLdX2UKGgGaAloD0MIP8kdNlG6cECUhpRSlGgVS9JoFkdAYSPReC04R3V9lChoBmgJaA9DCH44SIjyeHJAlIaUUpRoFUviaBZHQGEkaPbO/tZ1fZQoaAZoCWgPQwgeUaG6OStxQJSGlFKUaBVL6GgWR0BhJLC53C9AdX2UKGgGaAloD0MIVcA9z5/xckCUhpRSlGgVS+loFkdAYSXvqkdmx3V9lChoBmgJaA9DCFYMVwcAanJAlIaUUpRoFUu8aBZHQGEmL3TNMXd1fZQoaAZoCWgPQwjW5CmraVRxQJSGlFKUaBVL0WgWR0BhJi90zTF3dX2UKGgGaAloD0MIOwDirh4bckCUhpRSlGgVS+1oFkdAYSbG8274BXV9lChoBmgJaA9DCJsEb0ijkXFAlIaUUpRoFUu8aBZHQGEpnIp6QeV1fZQoaAZoCWgPQwiD3htDAH9wQJSGlFKUaBVLymgWR0BhKuN1hb4bdWUu"
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 3088,
76
+ "n_steps": 4096,
77
+ "gamma": 0.999,
78
+ "gae_lambda": 1.0,
79
+ "ent_coef": 0.01,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 512,
83
+ "n_epochs": 4,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWEM6XFVzZXJzXHhwc1xBbmFjb25kYTNcZW52c1xkcmwtaHVnMlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1fca478c76a14e3b444e19d4ee254cec104767fa6e1b9f2f57b15e247f6cb14
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c51c068e6bb1135122acb6ae9652bf422b90361bbc651e051032bc744bdef20
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Windows-10-10.0.19044-SP0 10.0.19044
2
+ Python: 3.9.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1
5
+ GPU Enabled: True
6
+ Numpy: 1.23.5
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (174 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 288.6687062287352, "std_reward": 17.66717431031802, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-24T16:44:35.072102"}