File size: 3,058 Bytes
820e0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: doc-topic-model_eval-01_train-03
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# doc-topic-model_eval-01_train-03

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0378
- Accuracy: 0.9879
- F1: 0.6261
- Precision: 0.7349
- Recall: 0.5454

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0935        | 0.4931 | 1000  | 0.0898          | 0.9814   | 0.0    | 0.0       | 0.0    |
| 0.0764        | 0.9862 | 2000  | 0.0702          | 0.9814   | 0.0    | 0.0       | 0.0    |
| 0.0621        | 1.4793 | 3000  | 0.0570          | 0.9820   | 0.0695 | 0.8912    | 0.0362 |
| 0.0542        | 1.9724 | 4000  | 0.0498          | 0.9840   | 0.2864 | 0.8319    | 0.1730 |
| 0.0468        | 2.4655 | 5000  | 0.0468          | 0.9852   | 0.4191 | 0.7753    | 0.2872 |
| 0.0441        | 2.9586 | 6000  | 0.0435          | 0.9861   | 0.4898 | 0.7741    | 0.3582 |
| 0.0395        | 3.4517 | 7000  | 0.0418          | 0.9860   | 0.5279 | 0.7116    | 0.4196 |
| 0.0384        | 3.9448 | 8000  | 0.0401          | 0.9866   | 0.5588 | 0.7206    | 0.4564 |
| 0.0343        | 4.4379 | 9000  | 0.0392          | 0.9869   | 0.5774 | 0.7226    | 0.4809 |
| 0.0337        | 4.9310 | 10000 | 0.0378          | 0.9873   | 0.5919 | 0.7400    | 0.4932 |
| 0.0305        | 5.4241 | 11000 | 0.0373          | 0.9876   | 0.5989 | 0.7503    | 0.4983 |
| 0.0295        | 5.9172 | 12000 | 0.0378          | 0.9875   | 0.6108 | 0.7303    | 0.5249 |
| 0.0271        | 6.4103 | 13000 | 0.0375          | 0.9877   | 0.6080 | 0.7490    | 0.5116 |
| 0.0257        | 6.9034 | 14000 | 0.0377          | 0.9876   | 0.6145 | 0.7284    | 0.5313 |
| 0.0234        | 7.3964 | 15000 | 0.0377          | 0.9876   | 0.6243 | 0.7147    | 0.5542 |
| 0.0241        | 7.8895 | 16000 | 0.0378          | 0.9879   | 0.6261 | 0.7349    | 0.5454 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1