File size: 3,551 Bytes
35e85d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: doc-topic-model_eval-04_train-01
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# doc-topic-model_eval-04_train-01

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0396
- Accuracy: 0.9879
- F1: 0.6415
- Precision: 0.7120
- Recall: 0.5837

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0941        | 0.4931  | 1000  | 0.0902          | 0.9815   | 0.0    | 0.0       | 0.0    |
| 0.0787        | 0.9862  | 2000  | 0.0703          | 0.9815   | 0.0    | 0.0       | 0.0    |
| 0.0628        | 1.4793  | 3000  | 0.0572          | 0.9823   | 0.1235 | 0.7562    | 0.0672 |
| 0.0537        | 1.9724  | 4000  | 0.0500          | 0.9843   | 0.3220 | 0.7927    | 0.2021 |
| 0.0478        | 2.4655  | 5000  | 0.0466          | 0.9853   | 0.4339 | 0.7566    | 0.3042 |
| 0.0453        | 2.9586  | 6000  | 0.0441          | 0.9859   | 0.5020 | 0.7244    | 0.3841 |
| 0.0389        | 3.4517  | 7000  | 0.0414          | 0.9865   | 0.5425 | 0.7258    | 0.4332 |
| 0.0393        | 3.9448  | 8000  | 0.0406          | 0.9863   | 0.5470 | 0.7070    | 0.4461 |
| 0.0349        | 4.4379  | 9000  | 0.0392          | 0.9870   | 0.5759 | 0.7229    | 0.4786 |
| 0.0344        | 4.9310  | 10000 | 0.0386          | 0.9872   | 0.5807 | 0.7357    | 0.4796 |
| 0.0302        | 5.4241  | 11000 | 0.0381          | 0.9873   | 0.5950 | 0.7282    | 0.5030 |
| 0.0305        | 5.9172  | 12000 | 0.0381          | 0.9872   | 0.5975 | 0.7153    | 0.5129 |
| 0.027         | 6.4103  | 13000 | 0.0378          | 0.9875   | 0.6030 | 0.7290    | 0.5141 |
| 0.0282        | 6.9034  | 14000 | 0.0374          | 0.9876   | 0.6094 | 0.7303    | 0.5229 |
| 0.0235        | 7.3964  | 15000 | 0.0378          | 0.9876   | 0.6213 | 0.7128    | 0.5507 |
| 0.0255        | 7.8895  | 16000 | 0.0372          | 0.9878   | 0.6303 | 0.7188    | 0.5613 |
| 0.0214        | 8.3826  | 17000 | 0.0378          | 0.9878   | 0.6356 | 0.7125    | 0.5737 |
| 0.0222        | 8.8757  | 18000 | 0.0381          | 0.9878   | 0.6313 | 0.7141    | 0.5658 |
| 0.0192        | 9.3688  | 19000 | 0.0390          | 0.9875   | 0.6285 | 0.6951    | 0.5736 |
| 0.0189        | 9.8619  | 20000 | 0.0391          | 0.9878   | 0.6365 | 0.7085    | 0.5778 |
| 0.0159        | 10.3550 | 21000 | 0.0396          | 0.9879   | 0.6415 | 0.7120    | 0.5837 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1