File size: 2,212 Bytes
a077b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4e8ee1
5a465e7
a077b18
 
 
 
 
 
 
 
 
8d0636c
a077b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: TGL-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# TGL-3

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an abstract-summary dataset, 
23000 pieces of data for training. The data was acquired by openreview.net.
It achieves the following results on the evaluation set:
- Loss: 2.4435
- Rouge1: 36.4998
- Rouge2: 17.8322
- Rougel: 31.8632
- Rougelsum: 31.8341

## Model description

Here is the paper https://arxiv.org/abs/1910.10683

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 2.9096        | 1.0   | 1240 | 2.5721          | 36.234  | 17.8214 | 31.5514 | 31.5549   |
| 2.7259        | 2.0   | 2480 | 2.5258          | 36.2572 | 17.9912 | 31.6249 | 31.6441   |
| 2.6434        | 3.0   | 3720 | 2.4957          | 36.4623 | 17.9657 | 31.7693 | 31.7542   |
| 2.5896        | 4.0   | 4960 | 2.4663          | 36.3692 | 17.8372 | 31.5909 | 31.6089   |
| 2.5491        | 5.0   | 6200 | 2.4511          | 36.4775 | 17.8094 | 31.8102 | 31.8003   |
| 2.5183        | 6.0   | 7440 | 2.4440          | 36.5892 | 17.906  | 31.9058 | 31.8985   |
| 2.4997        | 7.0   | 8680 | 2.4438          | 36.3747 | 17.8309 | 31.7314 | 31.7178   |
| 2.4863        | 8.0   | 9920 | 2.4435          | 36.4998 | 17.8322 | 31.8632 | 31.8341   |


### Framework versions

- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1