File size: 2,212 Bytes
a077b18 c4e8ee1 5a465e7 a077b18 8d0636c a077b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: TGL-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TGL-3
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an abstract-summary dataset,
23000 pieces of data for training. The data was acquired by openreview.net.
It achieves the following results on the evaluation set:
- Loss: 2.4435
- Rouge1: 36.4998
- Rouge2: 17.8322
- Rougel: 31.8632
- Rougelsum: 31.8341
## Model description
Here is the paper https://arxiv.org/abs/1910.10683
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 2.9096 | 1.0 | 1240 | 2.5721 | 36.234 | 17.8214 | 31.5514 | 31.5549 |
| 2.7259 | 2.0 | 2480 | 2.5258 | 36.2572 | 17.9912 | 31.6249 | 31.6441 |
| 2.6434 | 3.0 | 3720 | 2.4957 | 36.4623 | 17.9657 | 31.7693 | 31.7542 |
| 2.5896 | 4.0 | 4960 | 2.4663 | 36.3692 | 17.8372 | 31.5909 | 31.6089 |
| 2.5491 | 5.0 | 6200 | 2.4511 | 36.4775 | 17.8094 | 31.8102 | 31.8003 |
| 2.5183 | 6.0 | 7440 | 2.4440 | 36.5892 | 17.906 | 31.9058 | 31.8985 |
| 2.4997 | 7.0 | 8680 | 2.4438 | 36.3747 | 17.8309 | 31.7314 | 31.7178 |
| 2.4863 | 8.0 | 9920 | 2.4435 | 36.4998 | 17.8322 | 31.8632 | 31.8341 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|