nataliegilbert
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -28,6 +28,16 @@ from torchvision.io import read_image
|
|
28 |
from torch.utils.data import Dataset, DataLoader
|
29 |
from sklearn.metrics import accuracy_score
|
30 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
from transformers import DistilBertTokenizer, DistilBertModel</pre>
|
32 |
|
33 |
|
@@ -46,6 +56,146 @@ test_df = pd.read_csv(file_path)
|
|
46 |
X_test = test_df['title']
|
47 |
y_test = test_df['labels'] </pre>
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
# Load the embedding model from Huggingface. Transformer: DistilBERT
|
50 |
|
51 |
|
|
|
28 |
from torch.utils.data import Dataset, DataLoader
|
29 |
from sklearn.metrics import accuracy_score
|
30 |
import numpy as np
|
31 |
+
import pandas as pd
|
32 |
+
import numpy as np
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import seaborn as sns
|
35 |
+
import nltk
|
36 |
+
from nltk.corpus import stopwords
|
37 |
+
nltk.download('stopwords')
|
38 |
+
nltk.download('wordnet')
|
39 |
+
|
40 |
+
import re
|
41 |
from transformers import DistilBertTokenizer, DistilBertModel</pre>
|
42 |
|
43 |
|
|
|
56 |
X_test = test_df['title']
|
57 |
y_test = test_df['labels'] </pre>
|
58 |
|
59 |
+
# Clean the data
|
60 |
+
|
61 |
+
<pre>
|
62 |
+
def clean_headlines(df, column_name):
|
63 |
+
"""
|
64 |
+
Cleans a specified column in a DataFrame by:
|
65 |
+
- Removing HTML tags
|
66 |
+
- Removing <script> elements
|
67 |
+
- Removing extra spaces, trailing/leading whitespaces
|
68 |
+
- Removing special characters
|
69 |
+
- Removing repeating special characters
|
70 |
+
- Removing tabs
|
71 |
+
- Removing newline characters
|
72 |
+
- Removing specific punctuation: periods, commas, and parentheses
|
73 |
+
- Normalizing double quotes ("") to single quotes ('')
|
74 |
+
|
75 |
+
Args:
|
76 |
+
df (pd.DataFrame): The DataFrame containing the column to clean
|
77 |
+
column_name (str): The name of the column to clean
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
pd.DataFrame: A DataFrame with the cleaned column
|
81 |
+
"""
|
82 |
+
# Remove HTML tags
|
83 |
+
df[column_name] = df[column_name].str.replace(r'<[^<]+?>', '', regex=True)
|
84 |
+
|
85 |
+
# Remove scripts
|
86 |
+
df[column_name] = df[column_name].str.replace(r'<script.*?</script>', '', regex=True)
|
87 |
+
|
88 |
+
# Remove extra spaces including leading/trailing whitespaces
|
89 |
+
df[column_name] = df[column_name].str.strip().str.replace(r'\s+', ' ', regex=True)
|
90 |
+
|
91 |
+
# Remove special characters
|
92 |
+
df[column_name] = df[column_name].str.strip().str.replace(r'[&*|~`^=_+{}[\]<>\\]', ' ', regex=True)
|
93 |
+
|
94 |
+
# Remove repeating special characters
|
95 |
+
df[column_name] = df[column_name].str.strip().str.replace(r'([?!])\1+', r'\1', regex=True)
|
96 |
+
|
97 |
+
# Remove tabs
|
98 |
+
df[column_name] = df[column_name].str.replace(r'\t', ' ', regex=True)
|
99 |
+
|
100 |
+
# Remove newline characters
|
101 |
+
df[column_name] = df[column_name].str.replace(r'\n', ' ', regex=True)
|
102 |
+
|
103 |
+
# Normalize double quotes to single quotes
|
104 |
+
# df[column_name] = df[column_name].str.replace(r'"', "'", regex=True)
|
105 |
+
|
106 |
+
# Punctuation
|
107 |
+
# df[column_name] = df[column_name].str.replace(r'[.,()]', '', regex=True)
|
108 |
+
|
109 |
+
return df </pre>
|
110 |
+
|
111 |
+
<pre>
|
112 |
+
def normalize_headlines(df, column_name):
|
113 |
+
"""
|
114 |
+
Normalizes a given headline by:
|
115 |
+
- converting it to lowercase
|
116 |
+
- removing stopwords
|
117 |
+
- applying stemming or lemmatization to reduce words to their base forms
|
118 |
+
|
119 |
+
Args:
|
120 |
+
df (pd.DataFrame): The DataFrame containing the column to clean
|
121 |
+
column_name (str): The name of the column to clean
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
pd.DataFrame: A DataFrame with the cleaned column
|
125 |
+
"""
|
126 |
+
|
127 |
+
# Convert headlines to lowercase
|
128 |
+
df[column_name] = df[column_name].str.lower()
|
129 |
+
|
130 |
+
# Remove stopwords from headline
|
131 |
+
stop_words = set(stopwords.words('english'))
|
132 |
+
df[column_name] = df[column_name].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop_words)]))
|
133 |
+
|
134 |
+
# Lemmatize words to base form
|
135 |
+
lemmatizer = nltk.stem.WordNetLemmatizer()
|
136 |
+
df[column_name] = df[column_name].apply(lambda x: ' '.join([lemmatizer.lemmatize(word) for word in x.split()]))
|
137 |
+
|
138 |
+
return df </pre>
|
139 |
+
|
140 |
+
<pre>
|
141 |
+
def handle_missing_data(df, column_name):
|
142 |
+
"""
|
143 |
+
Handles missing or incomplete data in a given column of a DataFrame, including:
|
144 |
+
|
145 |
+
- Replacing NULL values with "Unknown Headline"
|
146 |
+
- Augmenting the data by creating headlines with synonyms of words in other headlines
|
147 |
+
|
148 |
+
Args:
|
149 |
+
df (pd.DataFrame): The DataFrame containing the column to clean
|
150 |
+
column_name (str): The name of the column to clean
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
pd.DataFrame: A DataFrame with the cleaned column
|
154 |
+
"""
|
155 |
+
|
156 |
+
# Remove NULL headlines
|
157 |
+
df = df.dropna(subset=[column_name])
|
158 |
+
|
159 |
+
# Set a minimum word count threshold
|
160 |
+
min_word_count = 3
|
161 |
+
|
162 |
+
# Filter out titles with fewer words
|
163 |
+
df = df[df[column_name].str.split().apply(len) >= min_word_count].reset_index(drop=True)
|
164 |
+
|
165 |
+
|
166 |
+
return df </pre>
|
167 |
+
|
168 |
+
<pre>
|
169 |
+
def consistency_checks(df, column_name):
|
170 |
+
"""
|
171 |
+
Ensures all headlines follow a consistent format by:
|
172 |
+
- Removing duplicate headlines
|
173 |
+
|
174 |
+
Args:
|
175 |
+
df (pd.DataFrame): The DataFrame containing the column to clean
|
176 |
+
column_name (str): The name of the column to clean
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
pd.DataFrame: A DataFrame with the cleaned column
|
180 |
+
|
181 |
+
"""
|
182 |
+
|
183 |
+
# Remove duplicate headlines
|
184 |
+
df = df.drop_duplicates(subset=[column_name])
|
185 |
+
|
186 |
+
# Filter headlines with too few or too many words
|
187 |
+
#df = df[df['title'].str.split().apply(len).between(3, 20)]
|
188 |
+
|
189 |
+
|
190 |
+
return df </pre>
|
191 |
+
|
192 |
+
<pre>
|
193 |
+
X_test = clean_headlines(X_test, 'title')
|
194 |
+
X_test = normalize_headlines(X_test, 'title')
|
195 |
+
X_test = X_test.dropna(subset = ['title'])
|
196 |
+
X_test = handle_missing_data(X_test, 'title')
|
197 |
+
X_test = consistency_checks(X_test, 'title') </pre>
|
198 |
+
|
199 |
# Load the embedding model from Huggingface. Transformer: DistilBERT
|
200 |
|
201 |
|