--- language: - en tags: - facebook - meta - pytorch - llama - llama-2 - inferentia2 - neuron extra_gated_heading: Access Llama 2 on Hugging Face extra_gated_description: This is a form to enable access to Llama 2 on Hugging Face after you have been granted access from Meta. Please visit the [Meta website](https://ai.meta.com/resources/models-and-libraries/llama-downloads) and accept our license terms and acceptable use policy before submitting this form. Requests will be processed in 1-2 days. extra_gated_prompt: '**Your Hugging Face account email address MUST match the email you provide on the Meta website, or your request will not be approved.**' extra_gated_button_content: Submit extra_gated_fields: ? I agree to share my name, email address and username with Meta and confirm that I have already been granted download access on the Meta website : checkbox pipeline_tag: text-generation inference: false arxiv: 2307.09288 --- # Neuronx model for [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) This repository contains are [**AWS Inferentia2**](https://aws.amazon.com/ec2/instance-types/inf2/) and [`neuronx`](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/) compatible checkpoint for [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf). You can find detailed information about the base model on its [Model Card](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf). ## Usage on Amazon SageMaker _coming soon_ ## Usage with optimum-neuron ```python from optimum.neuron import pipeline # Load pipeline from Hugging Face repository pipe = pipeline("text-generation", "meta-llama/Llama-2-7b-chat-hf") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ {"role": "user", "content": "What is 2+2?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Run generation outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Compilation Arguments **compilation arguments** ```json { "num_cores": 2, "auto_cast_type": "fp16" } ``` **input_shapes** ```json { "sequence_length": 2048, "batch_size": 4 } ```