File size: 2,666 Bytes
2cd2df2 b5834cf 2cd2df2 b5834cf 2cd2df2 7479f63 2cd2df2 77230ef 2cd2df2 4891ab0 2cd2df2 b5834cf 2cd2df2 b5834cf 2cd2df2 a3699a7 2cd2df2 69ddaa1 2cd2df2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
language:
- el
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: 'wav2vec2-large-xls-r-300m-el'
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: el
metrics:
- name: Test WER using LM
type: wer
value: 20.7340
- name: Test CER using LM
type: cer
value: 6.0466
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EL dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3218
- Wer: 0.3095
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_el.ipynb"
Test WER without LM
wer = 31.1294 %
cer = 7.9509 %
Test WER using LM
wer = 20.7340 %
cer = 6.0466 %
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 80.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.3683 | 8.77 | 500 | 3.1280 | 1.0 |
| 1.9915 | 17.54 | 1000 | 0.6600 | 0.6444 |
| 0.6565 | 26.32 | 1500 | 0.4208 | 0.4486 |
| 0.4484 | 35.09 | 2000 | 0.3885 | 0.4006 |
| 0.3573 | 43.86 | 2500 | 0.3548 | 0.3626 |
| 0.3063 | 52.63 | 3000 | 0.3375 | 0.3430 |
| 0.2751 | 61.4 | 3500 | 0.3359 | 0.3241 |
| 0.2511 | 70.18 | 4000 | 0.3222 | 0.3108 |
| 0.2361 | 78.95 | 4500 | 0.3205 | 0.3084 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|