ayameRushia's picture
Upload eval.py
a68f97d
raw
history blame
5.58 kB
import re
import argparse
import unicodedata
from typing import Dict
import torch
import torchaudio
from datasets import load_dataset, load_metric, Audio, Dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
import re
chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–\·]'
def log_results(result: Dataset, args: Dict[str, str]):
""" DO NOT CHANGE. This function computes and logs the result metrics. """
log_outputs = args.log_outputs
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
# load metric
wer = load_metric("wer")
cer = load_metric("cer")
# compute metrics
wer_result = wer.compute(references=result["sentence"], predictions=result["pred_strings"])
cer_result = cer.compute(references=result["sentence"], predictions=result["pred_strings"])
# print & log results
result_str = (
f"WER: {wer_result}\n"
f"CER: {cer_result}"
)
print(result_str)
with open(f"{dataset_id}_eval_results.txt", "w") as f:
f.write(result_str)
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
pred_file = f"log_{dataset_id}_predictions.txt"
target_file = f"log_{dataset_id}_targets.txt"
with open(pred_file, "w") as p, open(target_file, "w") as t:
# mapping function to write output
def write_to_file(batch, i):
p.write(f"{i}" + "\n")
p.write(batch["pred_strings"] + "\n")
t.write(f"{i}" + "\n")
t.write(batch["sentence"] + "\n")
result.map(write_to_file, with_indices=True)
def load_data(dataset_id, language, split='test'):
test_dataset = load_dataset(dataset_id, language, split=split, use_auth_token=True)
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
return test_dataset
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " "
batch["sentence"] = re.sub('!', '', batch["sentence"]).lower() + " "
batch["sentence"] = batch["sentence"].replace('\"',"").replace("&","").replace("'","").replace("(","").lower() + " "
batch["sentence"] = batch["sentence"].replace('[',"").replace("]","").replace("\\","").replace("«","").replace("»","").replace(")","").lower() + " "
batch["sentence"] = batch["sentence"].replace(" "," ").replace(" "," ").replace(" "," ").lower() + " "
batch["speech"] = batch["audio"]["array"]
return batch
def main(args):
test_dataset = load_data(args.dataset, args.config, args.split)
test_dataset = test_dataset.map(speech_file_to_array_fn)
model_id = args.model_id
def evaluate_with_lm(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(**inputs.to('cuda')).logits
int_result = processor.batch_decode(logits.cpu().numpy())
batch["pred_strings"] = int_result.text
return batch
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to('cuda')).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
return batch
if args.lm:
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_id,use_auth_token=True)
model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
model.to('cuda')
result = test_dataset.map(evaluate_with_lm, batched=True, batch_size=4)
else:
processor = Wav2Vec2Processor.from_pretrained(model_id,use_auth_token=True)
model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
model.to("cuda")
result = test_dataset.map(evaluate, batched=True, batch_size=4)
log_results(result, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument(
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
)
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
)
parser.add_argument(
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--lm", action='store_true', help="Using language model for evaluation or not."
)
args = parser.parse_args()
main(args)