--- language: - el license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: 'wav2vec2-large-xls-r-300m-el' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: el metrics: - name: Test WER using LM type: wer value: 20.7340 - name: Test CER using LM type: cer value: 6.0466 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EL dataset. It achieves the following results on the evaluation set: - Loss: 0.3218 - Wer: 0.3095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_el.ipynb" Test WER without LM wer = 31.1294 % cer = 7.9509 % Test WER using LM wer = 20.7340 % cer = 6.0466 % ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 80.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.3683 | 8.77 | 500 | 3.1280 | 1.0 | | 1.9915 | 17.54 | 1000 | 0.6600 | 0.6444 | | 0.6565 | 26.32 | 1500 | 0.4208 | 0.4486 | | 0.4484 | 35.09 | 2000 | 0.3885 | 0.4006 | | 0.3573 | 43.86 | 2500 | 0.3548 | 0.3626 | | 0.3063 | 52.63 | 3000 | 0.3375 | 0.3430 | | 0.2751 | 61.4 | 3500 | 0.3359 | 0.3241 | | 0.2511 | 70.18 | 4000 | 0.3222 | 0.3108 | | 0.2361 | 78.95 | 4500 | 0.3205 | 0.3084 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0