import re import argparse import unicodedata from typing import Dict import torch import torchaudio from datasets import load_dataset, load_metric, Audio, Dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM import re chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–\·]' def log_results(result: Dataset, args: Dict[str, str]): """ DO NOT CHANGE. This function computes and logs the result metrics. """ log_outputs = args.log_outputs dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) # load metric wer = load_metric("wer") cer = load_metric("cer") # compute metrics wer_result = wer.compute(references=result["sentence"], predictions=result["pred_strings"]) cer_result = cer.compute(references=result["sentence"], predictions=result["pred_strings"]) # print & log results result_str = ( f"WER: {wer_result}\n" f"CER: {cer_result}" ) print(result_str) with open(f"{dataset_id}_eval_results.txt", "w") as f: f.write(result_str) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: pred_file = f"log_{dataset_id}_predictions.txt" target_file = f"log_{dataset_id}_targets.txt" with open(pred_file, "w") as p, open(target_file, "w") as t: # mapping function to write output def write_to_file(batch, i): p.write(f"{i}" + "\n") p.write(batch["pred_strings"] + "\n") t.write(f"{i}" + "\n") t.write(batch["sentence"] + "\n") result.map(write_to_file, with_indices=True) def load_data(dataset_id, language, split='test'): test_dataset = load_dataset(dataset_id, language, split=split, use_auth_token=True) test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000)) return test_dataset def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " batch["sentence"] = re.sub('!', '', batch["sentence"]).lower() + " " batch["sentence"] = batch["sentence"].replace('\"',"").replace("&","").replace("'","").replace("(","").lower() + " " batch["sentence"] = batch["sentence"].replace('[',"").replace("]","").replace("\\","").replace("«","").replace("»","").replace(")","").lower() + " " batch["sentence"] = batch["sentence"].replace(" "," ").replace(" "," ").replace(" "," ").lower() + " " batch["speech"] = batch["audio"]["array"] return batch def main(args): test_dataset = load_data(args.dataset, args.config, args.split) test_dataset = test_dataset.map(speech_file_to_array_fn) model_id = args.model_id def evaluate_with_lm(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(**inputs.to('cuda')).logits int_result = processor.batch_decode(logits.cpu().numpy()) batch["pred_strings"] = int_result.text return batch def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to('cuda')).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True) return batch if args.lm: processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_id,use_auth_token=True) model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True) model.to('cuda') result = test_dataset.map(evaluate_with_lm, batched=True, batch_size=4) else: processor = Wav2Vec2Processor.from_pretrained(model_id,use_auth_token=True) model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True) model.to("cuda") result = test_dataset.map(evaluate, batched=True, batch_size=4) log_results(result, args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets" ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument( "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`" ) parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds." ) parser.add_argument( "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--lm", action='store_true', help="Using language model for evaluation or not." ) args = parser.parse_args() main(args)