--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 base_model: facebook/wav2vec2-xls-r-300m model-index: - name: wav2vec2-large-xls-r-300m-mn results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mn metrics: - type: wer value: 31.3919 name: Test WER using LM - type: cer value: 10.2565 name: Test CER using LM - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - type: wer value: 65.26 name: Test WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - type: wer value: 63.09 name: Test WER --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MN dataset. It achieves the following results on the evaluation set: - Loss: 0.5502 - Wer: 0.4042 ## Training and evaluation data Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_mn.ipynb" Test WER without LM wer = 58.2171 % cer = 16.0670 % Test WER using wer = 31.3919 % cer = 10.2565 % How to use eval.py ``` huggingface-cli login #login to huggingface for getting auth token to access the common voice v8 #running with LM python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test # running without LM python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test --greedy ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 6.35 | 400 | 0.9380 | 0.7902 | | 3.2674 | 12.7 | 800 | 0.5794 | 0.5309 | | 0.7531 | 19.05 | 1200 | 0.5749 | 0.4815 | | 0.5382 | 25.4 | 1600 | 0.5530 | 0.4447 | | 0.4293 | 31.75 | 2000 | 0.5709 | 0.4237 | | 0.4293 | 38.1 | 2400 | 0.5476 | 0.4059 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0