File size: 3,488 Bytes
71e070f
8f489be
71e070f
8f489be
71e070f
 
 
 
 
8f489be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e070f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
language:
- en
thumbnail: null
tags:
- text-classification
license: mit
datasets:
- trec
metrics: null
model-index:
- name: aychang/bert-base-cased-trec-coarse
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: trec
      type: trec
      config: default
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.974
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.9793164100816639
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.974
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9746805065928548
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.9783617516169679
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.974
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.974
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.9783635353409951
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.974
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.97377371266232
      verified: true
    - name: loss
      type: loss
      value: 0.13812002539634705
      verified: true
---

# bert-base-cased trained on TREC 6-class task

## Model description

A simple base BERT model trained on the "trec" dataset.

## Intended uses & limitations

#### How to use

##### Transformers

```python
# Load model and tokenizer
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Use pipeline
from transformers import pipeline

model_name = "aychang/bert-base-cased-trec-coarse"

nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name)

results = nlp(["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"])
```

##### AdaptNLP

```python
from adaptnlp import EasySequenceClassifier

model_name = "aychang/bert-base-cased-trec-coarse"
texts = ["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"]

classifer = EasySequenceClassifier
results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2)
```

#### Limitations and bias

This is minimal language model trained on a benchmark dataset.

## Training data

TREC https://huggingface.co/datasets/trec

## Training procedure

Preprocessing, hardware used, hyperparameters...
#### Hardware
One V100

#### Hyperparameters and Training Args
```python
from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir='./models',
    num_train_epochs=2,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    warmup_steps=500,
    weight_decay=0.01,
    evaluation_strategy="steps",
    logging_dir='./logs',
    save_steps=3000
)
```

## Eval results

```
{'epoch': 2.0,
 'eval_accuracy': 0.974,
 'eval_f1': array([0.98181818, 0.94444444, 1.        , 0.99236641, 0.96995708,
        0.98159509]),
 'eval_loss': 0.138086199760437,
 'eval_precision': array([0.98540146, 0.98837209, 1.        , 0.98484848, 0.94166667,
        0.97560976]),
 'eval_recall': array([0.97826087, 0.90425532, 1.        , 1.        , 1.        ,
        0.98765432]),
 'eval_runtime': 1.6132,
 'eval_samples_per_second': 309.943}
```