ayjays132 commited on
Commit
f9bc1af
·
1 Parent(s): b37b2cc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +291 -0
README.md CHANGED
@@ -1,3 +1,294 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ model_type: gpt2
3
+ architectures:
4
+ - GPT2LMHeadModel
5
+ config:
6
+ adaptation_rate: 0.05
7
+ complexity_metric: null
8
+ desired_improvement_rate: 0.02
9
+ ecosystem_dynamics:
10
+ environmental_volatility: 0.1
11
+ resource_pool: 1
12
+ embedding_dim: 768
13
+ growth_improvement_threshold: 0.01
14
+ hidden_dim: 2048
15
+ initial_neuron_count: 5000
16
+ innovative_growth_net:
17
+ adaptation_rate: 0.05
18
+ complexity_metric: null
19
+ initial_capacity: 250000
20
+ input_size: 2048
21
+ input_dimension: 768
22
+ low_stability_threshold: 0.01
23
+ max_complexity: 10000
24
+ max_neurons: 250000
25
+ max_sequence_length: 200
26
+ min_epochs_before_growth: 5
27
+ model_filename: pytorch_model.bin
28
+ num_embeddings: 25000
29
+ pruning_improvement_threshold: 0.005
30
+ some_adaptation_rate: 0.05
31
+ stability_threshold: 0.02
32
+ start_token_index: 2
33
+ transformers_version: 4.34.0
34
+ attn_pdrop: 0.1
35
+ bos_token_id: 50256
36
+ embd_pdrop: 0.1
37
+ eos_token_id: 50256
38
+ initializer_range: 0.02
39
+ layer_norm_epsilon: 0.00001
40
+ n_ctx: 2048
41
+ n_embd: 2048
42
+ n_head: 16
43
+ n_layer: 24
44
+ n_positions: 2048
45
+ n_special: 0
46
+ predict_special_tokens: true
47
+ resid_pdrop: 0.1
48
+ summary_activation: null
49
+ summary_first_dropout: 0.1
50
+ summary_proj_to_labels: true
51
+ summary_type: cls_index
52
+ summary_use_proj: true
53
  license: apache-2.0
54
+ datasets:
55
+ - vicgalle/alpaca-gpt4
56
+ language:
57
+ - en
58
+ tags:
59
+ - text-generation-inference
60
+ metrics:
61
+ - accuracy
62
+ pipeline_tag: text-generation
63
+ library_name: transformers
64
  ---
65
+ ---
66
+ ## Phillnet Large 🚀
67
+
68
+ ![Text Generation](https://huggingface.co/ayjays132/phillnet/resolve/main/Phillnet.png?download=true)
69
+
70
+ 🚀 Welcome to **Phillnet5b** 🌟
71
+
72
+ Dive into the depths of AI with Phillnet, your 5 Billion-parameter titan! This colossal model is not just numbers; it's a labyrinth of knowledge, ready to unlock new realms of possibilities. 🧠💡
73
+
74
+ From text generation to complex problem-solving, Phillnet5b is your gateway to unparalleled AI power. Get ready to embark on a journey where every parameter is a pathway to innovation. 🌍✨
75
+
76
+ Let's revolutionize the world with **Phillnet5b** - where every bit counts and every neuron fires towards the future! 🚀🔮
77
+
78
+ ---
79
+
80
+ ## Usage and License
81
+
82
+ ![Text Generation](https://huggingface.co/ayjays132/phillnet/resolve/main/usage.png?download=true)
83
+
84
+ If you intend to use this AI model, I kindly request that you provide appropriate credit to the original author (Phillip Holland) as a gesture of acknowledgment for his effort in developing and sharing this model.
85
+
86
+ **Please adhere to the following guidelines:**
87
+
88
+ 1. **Give Credit:** When you use this AI model, include a visible and prominent credit to the original author (Phillip Holland) in your project, research paper, or application. You can use the following format:
89
+
90
+
91
+ 2. **Review the License:** Carefully read and comply with the terms of the accompanying license (LISCENSE.md). The license outlines the permissions and restrictions for using this AI model. Make sure you understand and adhere to its provisions.
92
+
93
+ By using this AI model, you acknowledge that you have read and agreed to the terms and conditions set forth in the license.
94
+
95
+ Thank you for your understanding and cooperation. Together, we can foster responsible and ethical AI development and usage.
96
+
97
+ ---
98
+ ## Model Overview
99
+
100
+ Phillnet, a marvel in the realm of language models, is a cutting-edge Dynamic Neural Network designed for advanced natural language processing tasks. Breaking away from conventional models, Phillnet exhibits dynamic adaptation and continuous evolution, showcasing its prowess in continual improvement. Crafted with a custom architecture, Phillnet seamlessly integrates an Innovative Growth Network, ushering in adaptability and innovation.
101
+
102
+ ## Key Features
103
+
104
+ - **Model Type:** Dynamic Neural Network 🧠
105
+ - **Embedding Dimension:** 768
106
+ - **Hidden Dimension:** 2048
107
+ - **Initial Neuron Count:** 5000
108
+ - **Input Dimension:** 768
109
+ - **Max Neurons:** 250000
110
+ - **Max Sequence Length:** 200
111
+ - **Num Embeddings:** 25000
112
+ - **Model Filename:** pytorch_model.bin
113
+ - **Transformers Version:** 4.34.0
114
+
115
+ ## Ecosystem Dynamics 🌐
116
+
117
+ Phillnet thrives in a dynamic ecosystem:
118
+
119
+ - **Environmental Volatility:** 0.1
120
+ - **Resource Pool:** 1.0
121
+
122
+ ## Innovative Growth Network 🌱
123
+
124
+ Empowered by an Innovative Growth Network for dynamic adaptation:
125
+
126
+ - **Adaptation Rate:** 0.05
127
+ - **Initial Capacity:** 250000
128
+ - **Input Size:** 2048
129
+
130
+ ---
131
+
132
+ ## Hyperparameters Overview
133
+
134
+ Here's a concise overview of the key hyperparameters used for training the model:
135
+
136
+ **Training Parameters**
137
+ - `max_neurons`: 250,000
138
+ - `epochs`: 50
139
+ - `clip`: 5
140
+ - `patience`: 7
141
+ - `adaptation_rate`: 0.05
142
+ - `sequence_length`: 200
143
+ - `max_sequence_length`: 200
144
+ - `weight_decay`: 0.005
145
+ - `num_embeddings`: 25,000
146
+ - `embedding_dim`: 768
147
+ - `hidden_dim`: 2048
148
+ - `learning_rate`: 1e-5
149
+ - `some_intermediate_size`: 3072
150
+
151
+ **Additional Parameters**
152
+ - `input_dimension`: 768
153
+ - `initial_neuron_count`: 5000
154
+ - `some_adaptation_rate`: 0.05
155
+ - `complexity_metric`: None
156
+
157
+ **New Parameters**
158
+ - `growth_improvement_threshold`: 0.01
159
+ - `pruning_improvement_threshold`: 0.005
160
+ - `stability_threshold`: 0.02
161
+ - `max_complexity`: 10,000
162
+ - `low_stability_threshold`: 0.01
163
+ - `min_epochs_before_growth`: 5
164
+ - `desired_improvement_rate`: 0.02
165
+
166
+ ---
167
+
168
+ ## Seamless Integration with Hugging Face 🤗
169
+
170
+ from transformers import AutoTokenizer, AutoModelForCausalLM
171
+
172
+ tokenizer = AutoTokenizer.from_pretrained("ayjays132/phillnet")
173
+ tokenizer.add_special_tokens({'pad_token': '[PAD]'})
174
+
175
+ model = AutoModelForCausalLM.from_pretrained("ayjays132/phillnet")
176
+
177
+ # Example conversation
178
+ conversation_history = [
179
+ "Hello, how are you?",
180
+ "I'm doing well, thank you! How about you?",
181
+ "I'm good too. What's new with you?",
182
+ "Not much, just working on some projects. How can I help you today?"
183
+ ]
184
+
185
+ # Concatenate the conversation strings
186
+ conversation_text = " ".join(conversation_history)
187
+
188
+ # Tokenize and pad the input
189
+ input_ids = tokenizer.encode(conversation_text, return_tensors="pt", padding=True, truncation=True)
190
+
191
+ # Generate a response
192
+ output_ids = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
193
+
194
+ # Decode the generated response
195
+ generated_response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
196
+
197
+ # Print the generated response
198
+ print("Generated Response:", generated_response)
199
+
200
+ ## Experience the Magic ✨
201
+
202
+ - **Adaptive Learning:** Phillnet dynamically adapts to data patterns, continually enhancing its performance.
203
+ - **Innovative Growth:** The model evolves through an Innovative Growth Network, ensuring continuous enhancement.
204
+ - **Custom Architecture:** Crafted with a dynamic custom architecture for unparalleled language understanding.
205
+
206
+ 🌐 **Welcome to the CustomModelLoader.py Odyssey!** 🌟
207
+
208
+ Embark on a scholarly quest to unlock the potential of your AI model, "ayjays132/phillnet", with our elegantly crafted script. Designed for the curious minds in AI, this guide is your beacon through the realm of machine learning. Let's dive into the script that's set to revolutionize your AI journey! 🚀
209
+
210
+ ### The Script Unveiled: CustomModelLoader.py
211
+ This script is your trusty companion in the AI landscape, designed to effortlessly awaken your pre-trained model from its slumber in the Hugging Face Hub. Here's a peek into its core:
212
+
213
+ ```
214
+ # CustomModelLoader.py
215
+
216
+ import torch
217
+ from transformers import AutoTokenizer, AutoModelForCausalLM
218
+ import logging
219
+
220
+ # Set up logging
221
+ logging.basicConfig(level=logging.INFO)
222
+ logger = logging.getLogger(__name__)
223
+
224
+ def load_custom_model(model_name, device):
225
+ try:
226
+ # Load the model directly from Hugging Face Hub
227
+ model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
228
+ logger.info(f"Model loaded successfully from {model_name}")
229
+ return model
230
+ except Exception as e:
231
+ logger.error(f"An error occurred while loading the model: {e}")
232
+ raise
233
+
234
+ def load_tokenizer(tokenizer_name):
235
+ try:
236
+ # Load the tokenizer
237
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
238
+ logger.info(f"Tokenizer loaded successfully from {tokenizer_name}")
239
+ return tokenizer
240
+ except Exception as e:
241
+ logger.error(f"An error occurred while loading the tokenizer: {e}")
242
+ raise
243
+
244
+ def inspect_model_layers(model):
245
+ logger.info("Inspecting model layers and weights...")
246
+ for name, param in model.named_parameters():
247
+ logger.debug(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]}...\n")
248
+
249
+ if __name__ == "__main__":
250
+ # Define device
251
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
252
+ logger.info(f"Using {'CUDA' if device.type == 'cuda' else 'CPU'}")
253
+
254
+ # Model name or path in Hugging Face Hub
255
+ model_name = "ayjays132/phillnet"
256
+ tokenizer_name = model_name # Assuming tokenizer is at the same path
257
+
258
+ try:
259
+ # Load the tokenizer and model
260
+ tokenizer = load_tokenizer(tokenizer_name)
261
+ model = load_custom_model(model_name, device)
262
+
263
+ # Inspect the model layers and weights
264
+ inspect_model_layers(model)
265
+
266
+ # Perform a simple test to verify model weights are loaded correctly (Optional)
267
+ input_ids = tokenizer.encode("Hello, world!", return_tensors="pt").to(device)
268
+ with torch.no_grad():
269
+ outputs = model(input_ids)
270
+ logger.info("Model test run completed successfully.")
271
+
272
+ print("Custom model and tokenizer loaded successfully.")
273
+
274
+ except Exception as e:
275
+ logger.error(f"An error occurred: {e}")
276
+ ```
277
+
278
+ ### With `CustomModelLoader.py` at your side, you're not just loading a model; you're unlocking a world of possibilities. Whether you're fine-tuning for accuracy or predicting the unknown, your AI journey is about to get a whole lot smoother. So, scholars and AI enthusiasts, let the odyssey begin! 🎩✨
279
+
280
+ ### 🛠 How It Works: The Mechanics
281
+
282
+ 1. **Setting the Stage**: Our script begins by checking whether to summon the powers of CUDA or settle in the CPU realm.
283
+ 2. **Summoning the Model & Tokenizer**: It then gracefully calls upon the `AutoModelForCausalLM` and `AutoTokenizer` from the Hugging Face Hub, ensuring your model and tokenizer are at the ready.
284
+ 3. **Error Handling Like a Pro**: Should any mischiefs arise, our script is well-armed with try-except blocks to catch and log any spells gone awry, keeping you informed every step of the way.
285
+
286
+ ### 🎓 For the AI Scholars:
287
+
288
+ This script isn't just a tool; it's a companion designed to make your AI endeavors more productive and enjoyable. Here's how you can harness its power:
289
+
290
+ - **Plug & Play**: Simply place this script in your project, and it's ready to go. No complicated setup required!
291
+ - **Error Logs**: Detailed logging ensures you're always in the know, making troubleshooting a breeze.
292
+ - **Flexibility**: Designed with customization in mind, feel free to tweak the script to fit the unique needs of your scholarly pursuits.
293
+
294
+ ---