ayjays132 commited on
Commit
dfde229
1 Parent(s): c4b8d73

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +313 -0
README.md ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ activation_function: gelu_new
3
+ architectures:
4
+ - GPT2LMHeadModel
5
+ attn_pdrop: 0.1
6
+ bos_token_id: 50256
7
+ embd_pdrop: 0.1
8
+ eos_token_id: 50256
9
+ initializer_range: 0.02
10
+ layer_norm_epsilon: 1e-05
11
+ model_type: gpt2
12
+ n_ctx: 2048
13
+ n_embd: 2048
14
+ n_head: 16
15
+ n_layer: 24
16
+ n_positions: 2048
17
+ n_special: 0
18
+ predict_special_tokens: true
19
+ resid_pdrop: 0.1
20
+ summary_activation: null
21
+ summary_first_dropout: 0.1
22
+ summary_proj_to_labels: true
23
+ summary_type: cls_index
24
+ summary_use_proj: true
25
+ task_specific_params:
26
+ text-generation:
27
+ do_sample: true
28
+ max_length: 2048
29
+ transformers_version: 4.34.0
30
+ language:
31
+ - en
32
+ tags:
33
+ - text-generation-inference
34
+ metrics:
35
+ - accuracy
36
+ pipeline_tag: text-generation
37
+ library_name: transformers
38
+ datasets:
39
+ - vicgalle/alpaca-gpt4
40
+ license: apache-2.0
41
+ custom_params:
42
+ adaptation_rate: 0.05
43
+ complexity_metric: null
44
+ desired_improvement_rate: 0.02
45
+ ecosystem_dynamics:
46
+ environmental_volatility: 0.1
47
+ resource_pool: 1
48
+ growth_improvement_threshold: 0.01
49
+ hidden_dim: 2048
50
+ initial_neuron_count: 5000
51
+ innovative_growth_net:
52
+ adaptation_rate: 0.05
53
+ complexity_metric: null
54
+ initial_capacity: 250000
55
+ input_size: 2048
56
+ input_dimension: 2048
57
+ low_stability_threshold: 0.01
58
+ max_complexity: 50000
59
+ max_neurons: 250000
60
+ max_sequence_length: 2048
61
+ min_epochs_before_growth: 5
62
+ model_filename: pytorch_model.bin
63
+ num_embeddings: 100000
64
+ pruning_improvement_threshold: 0.005
65
+ some_adaptation_rate: 0.05
66
+ stability_threshold: 0.02
67
+ start_token_index: 2
68
+ max_input_length: 2048
69
+ max_total_tokens: 2051
70
+ max_concurrent_requests: 128
71
+ max_best_of: 2
72
+ max_stop_sequences: 4
73
+ max_top_n_tokens: 5
74
+ waiting_served_ratio: 1.2
75
+ max_batch_prefill_tokens: 2048
76
+ max_waiting_tokens: 200
77
+ ---
78
+ ---
79
+ ## Phillnet Large 🚀
80
+
81
+ ![Text Generation](https://huggingface.co/ayjays132/phillnet/resolve/main/Phillnet.png?download=true)
82
+
83
+ 🚀 Welcome to **Phillnet11b** 🌟
84
+
85
+ Dive into the depths of AI with Phillnet, your 11 Billion-parameter titan! This colossal model is not just numbers; it's a labyrinth of knowledge, ready to unlock new realms of possibilities. 🧠💡
86
+
87
+ From text generation to complex problem-solving, Phillnet11b is your gateway to unparalleled AI power. Get ready to embark on a journey where every parameter is a pathway to innovation. 🌍✨
88
+
89
+ Let's revolutionize the world with **Phillnet5b** - where every bit counts and every neuron fires towards the future! 🚀🔮
90
+
91
+ ---
92
+
93
+ ## Usage and License
94
+
95
+ ![Text Generation](https://huggingface.co/ayjays132/phillnet/resolve/main/usage.png?download=true)
96
+
97
+ If you intend to use this AI model, I kindly request that you provide appropriate credit to the original author (Phillip Holland) as a gesture of acknowledgment for his effort in developing and sharing this model.
98
+
99
+ **Please adhere to the following guidelines:**
100
+
101
+ 1. **Give Credit:** When you use this AI model, include a visible and prominent credit to the original author (Phillip Holland) in your project, research paper, or application. You can use the following format:
102
+
103
+
104
+ 2. **Review the License:** Carefully read and comply with the terms of the accompanying license (LISCENSE.md). The license outlines the permissions and restrictions for using this AI model. Make sure you understand and adhere to its provisions.
105
+
106
+ By using this AI model, you acknowledge that you have read and agreed to the terms and conditions set forth in the license.
107
+
108
+ Thank you for your understanding and cooperation. Together, we can foster responsible and ethical AI development and usage.
109
+
110
+ ---
111
+ ## Model Overview
112
+
113
+ ![Text Generation](https://huggingface.co/ayjays132/phillnet/resolve/main/Model_Overview.png?download=true)
114
+
115
+ Phillnet, a marvel in the realm of language models, is a cutting-edge Dynamic Neural Network designed for advanced natural language processing tasks. Breaking away from conventional models, Phillnet exhibits dynamic adaptation and continuous evolution, showcasing its prowess in continual improvement. Crafted with a custom architecture, Phillnet seamlessly integrates an Innovative Growth Network, ushering in adaptability and innovation.
116
+
117
+ ## Key Features
118
+
119
+ - **Model Type:** Dynamic Neural Network 🧠
120
+ - **Embedding Dimension:** 2048
121
+ - **Hidden Dimension:** 2048
122
+ - **Initial Neuron Count:** 5000
123
+ - **Input Dimension:** 2048
124
+ - **Max Neurons:** 250000
125
+ - **Max Sequence Length:** 2048
126
+ - **Num Embeddings:** 100000
127
+ - **Model Filename:** pytorch_model.bin
128
+ - **Transformers Version:** 4.34.0
129
+
130
+ ## Ecosystem Dynamics 🌐
131
+
132
+ Phillnet thrives in a dynamic ecosystem:
133
+
134
+ - **Environmental Volatility:** 0.1
135
+ - **Resource Pool:** 1.0
136
+
137
+ ## Innovative Growth Network 🌱
138
+
139
+ Empowered by an Innovative Growth Network for dynamic adaptation:
140
+
141
+ - **Adaptation Rate:** 0.05
142
+ - **Initial Capacity:** 250000
143
+ - **Input Size:** 2048
144
+
145
+ ---
146
+
147
+ ## Hyperparameters Overview
148
+
149
+ ![Text Generation](https://huggingface.co/ayjays132/phillnet/resolve/main/Hyperameters.png?download=true)
150
+
151
+ Here's a concise overview of the key hyperparameters used for training the model:
152
+
153
+ **Training Parameters**
154
+ - `max_neurons`: 250,000
155
+ - `epochs`: 50
156
+ - `clip`: 5
157
+ - `patience`: 7
158
+ - `adaptation_rate`: 0.05
159
+ - `sequence_length`: 2048
160
+ - `max_sequence_length`: 2048
161
+ - `weight_decay`: 0.005
162
+ - `num_embeddings`: 100,000
163
+ - `embedding_dim`: 2048
164
+ - `hidden_dim`: 2048
165
+ - `learning_rate`: 1e-5
166
+ - `some_intermediate_size`: 2048
167
+
168
+ **Additional Parameters**
169
+ - `input_dimension`: 2048
170
+ - `initial_neuron_count`: 5000
171
+ - `some_adaptation_rate`: 0.05
172
+ - `complexity_metric`: None
173
+
174
+ **New Parameters**
175
+ - `growth_improvement_threshold`: 0.01
176
+ - `pruning_improvement_threshold`: 0.005
177
+ - `stability_threshold`: 0.02
178
+ - `max_complexity`: 10,000
179
+ - `low_stability_threshold`: 0.01
180
+ - `min_epochs_before_growth`: 5
181
+ - `desired_improvement_rate`: 0.02
182
+
183
+ ---
184
+
185
+ ## Seamless Integration with Hugging Face 🤗
186
+
187
+ ![Text Generation](https://huggingface.co/ayjays132/phillnet/resolve/main/Integration.png?download=true)
188
+
189
+ from transformers import AutoTokenizer, AutoModelForCausalLM
190
+
191
+ tokenizer = AutoTokenizer.from_pretrained("ayjays132/PhillnetLarge")
192
+ tokenizer.add_special_tokens({'pad_token': '[PAD]'})
193
+
194
+ model = AutoModelForCausalLM.from_pretrained("ayjays132/PhillnetLarge")
195
+
196
+ # Example conversation
197
+ conversation_history = [
198
+ "Hello, how are you?",
199
+ "I'm doing well, thank you! How about you?",
200
+ "I'm good too. What's new with you?",
201
+ "Not much, just working on some projects. How can I help you today?"
202
+ ]
203
+
204
+ # Concatenate the conversation strings
205
+ conversation_text = " ".join(conversation_history)
206
+
207
+ # Tokenize and pad the input
208
+ input_ids = tokenizer.encode(conversation_text, return_tensors="pt", padding=True, truncation=True)
209
+
210
+ # Generate a response
211
+ output_ids = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
212
+
213
+ # Decode the generated response
214
+ generated_response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
215
+
216
+ # Print the generated response
217
+ print("Generated Response:", generated_response)
218
+
219
+ ## Experience the Magic ✨
220
+
221
+ - **Adaptive Learning:** Phillnet dynamically adapts to data patterns, continually enhancing its performance.
222
+ - **Innovative Growth:** The model evolves through an Innovative Growth Network, ensuring continuous enhancement.
223
+ - **Custom Architecture:** Crafted with a dynamic custom architecture for unparalleled language understanding.
224
+
225
+ 🌐 **Welcome to the CustomModelLoader.py Odyssey!** 🌟
226
+
227
+ Embark on a scholarly quest to unlock the potential of your AI model, "ayjays132/phillnet", with our elegantly crafted script. Designed for the curious minds in AI, this guide is your beacon through the realm of machine learning. Let's dive into the script that's set to revolutionize your AI journey! 🚀
228
+
229
+ ### The Script Unveiled: CustomModelLoader.py
230
+ This script is your trusty companion in the AI landscape, designed to effortlessly awaken your pre-trained model from its slumber in the Hugging Face Hub. Here's a peek into its core:
231
+
232
+ ```
233
+ # CustomModelLoader.py
234
+
235
+ import torch
236
+ from transformers import AutoTokenizer, AutoModelForCausalLM
237
+ import logging
238
+
239
+ # Set up logging
240
+ logging.basicConfig(level=logging.INFO)
241
+ logger = logging.getLogger(__name__)
242
+
243
+ def load_custom_model(model_name, device):
244
+ try:
245
+ # Load the model directly from Hugging Face Hub
246
+ model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
247
+ logger.info(f"Model loaded successfully from {model_name}")
248
+ return model
249
+ except Exception as e:
250
+ logger.error(f"An error occurred while loading the model: {e}")
251
+ raise
252
+
253
+ def load_tokenizer(tokenizer_name):
254
+ try:
255
+ # Load the tokenizer
256
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
257
+ logger.info(f"Tokenizer loaded successfully from {tokenizer_name}")
258
+ return tokenizer
259
+ except Exception as e:
260
+ logger.error(f"An error occurred while loading the tokenizer: {e}")
261
+ raise
262
+
263
+ def inspect_model_layers(model):
264
+ logger.info("Inspecting model layers and weights...")
265
+ for name, param in model.named_parameters():
266
+ logger.debug(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]}...\n")
267
+
268
+ if __name__ == "__main__":
269
+ # Define device
270
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
271
+ logger.info(f"Using {'CUDA' if device.type == 'cuda' else 'CPU'}")
272
+
273
+ # Model name or path in Hugging Face Hub
274
+ model_name = "ayjays132/PhillnetLarge"
275
+ tokenizer_name = model_name # Assuming tokenizer is at the same path
276
+
277
+ try:
278
+ # Load the tokenizer and model
279
+ tokenizer = load_tokenizer(tokenizer_name)
280
+ model = load_custom_model(model_name, device)
281
+
282
+ # Inspect the model layers and weights
283
+ inspect_model_layers(model)
284
+
285
+ # Perform a simple test to verify model weights are loaded correctly (Optional)
286
+ input_ids = tokenizer.encode("Hello, world!", return_tensors="pt").to(device)
287
+ with torch.no_grad():
288
+ outputs = model(input_ids)
289
+ logger.info("Model test run completed successfully.")
290
+
291
+ print("Custom model and tokenizer loaded successfully.")
292
+
293
+ except Exception as e:
294
+ logger.error(f"An error occurred: {e}")
295
+ ```
296
+
297
+ ### With `CustomModelLoader.py` at your side, you're not just loading a model; you're unlocking a world of possibilities. Whether you're fine-tuning for accuracy or predicting the unknown, your AI journey is about to get a whole lot smoother. So, scholars and AI enthusiasts, let the odyssey begin! 🎩✨
298
+
299
+ ### 🛠 How It Works: The Mechanics
300
+
301
+ 1. **Setting the Stage**: Our script begins by checking whether to summon the powers of CUDA or settle in the CPU realm.
302
+ 2. **Summoning the Model & Tokenizer**: It then gracefully calls upon the `AutoModelForCausalLM` and `AutoTokenizer` from the Hugging Face Hub, ensuring your model and tokenizer are at the ready.
303
+ 3. **Error Handling Like a Pro**: Should any mischiefs arise, our script is well-armed with try-except blocks to catch and log any spells gone awry, keeping you informed every step of the way.
304
+
305
+ ### 🎓 For the AI Scholars:
306
+
307
+ This script isn't just a tool; it's a companion designed to make your AI endeavors more productive and enjoyable. Here's how you can harness its power:
308
+
309
+ - **Plug & Play**: Simply place this script in your project, and it's ready to go. No complicated setup required!
310
+ - **Error Logs**: Detailed logging ensures you're always in the know, making troubleshooting a breeze.
311
+ - **Flexibility**: Designed with customization in mind, feel free to tweak the script to fit the unique needs of your scholarly pursuits.
312
+
313
+ ---