ayjays132 commited on
Commit
636c8e6
β€’
1 Parent(s): 30d3078

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md CHANGED
@@ -56,3 +56,78 @@ model:
56
 
57
  custom_model = DynamicNeuralNetwork.from_pretrained("ayjays132/phillnet", config=DynamicNeuralNetworkConfig.from_pretrained("ayjays132/phillnet"))
58
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  custom_model = DynamicNeuralNetwork.from_pretrained("ayjays132/phillnet", config=DynamicNeuralNetworkConfig.from_pretrained("ayjays132/phillnet"))
58
  ---
59
+
60
+ # Model Card for Phillnet πŸš€
61
+
62
+ ## Model Overview
63
+
64
+ Phillnet, a marvel in the realm of language models, is a cutting-edge Dynamic Neural Network designed for advanced natural language processing tasks. Breaking away from conventional models, Phillnet exhibits dynamic adaptation and continuous evolution, showcasing its prowess in continual improvement. Crafted with a custom architecture, Phillnet seamlessly integrates an Innovative Growth Network, ushering in adaptability and innovation.
65
+
66
+ ## Key Features
67
+
68
+ - **Model Type:** Dynamic Neural Network 🧠
69
+ - **Embedding Dimension:** 768
70
+ - **Hidden Dimension:** 2048
71
+ - **Initial Neuron Count:** 5000
72
+ - **Input Dimension:** 768
73
+ - **Max Neurons:** 250000
74
+ - **Max Sequence Length:** 200
75
+ - **Num Embeddings:** 25000
76
+ - **Model Filename:** pytorch_model.bin
77
+ - **Transformers Version:** 4.34.0
78
+
79
+ ## Ecosystem Dynamics 🌐
80
+
81
+ Phillnet thrives in a dynamic ecosystem:
82
+
83
+ - **Environmental Volatility:** 0.1
84
+ - **Resource Pool:** 1.0
85
+
86
+ ## Innovative Growth Network 🌱
87
+
88
+ Empowered by an Innovative Growth Network for dynamic adaptation:
89
+
90
+ - **Adaptation Rate:** 0.05
91
+ - **Initial Capacity:** 250000
92
+ - **Input Size:** 2048
93
+
94
+ ## Seamless Integration with Hugging Face πŸ€—
95
+
96
+ from transformers import AutoTokenizer, AutoModelForCausalLM
97
+
98
+ tokenizer = AutoTokenizer.from_pretrained("ayjays132/phillnet")
99
+ tokenizer.add_special_tokens({'pad_token': '[PAD]'})
100
+
101
+ model = AutoModelForCausalLM.from_pretrained("ayjays132/phillnet")
102
+
103
+ # Example conversation
104
+ conversation_history = [
105
+ "Hello, how are you?",
106
+ "I'm doing well, thank you! How about you?",
107
+ "I'm good too. What's new with you?",
108
+ "Not much, just working on some projects. How can I help you today?"
109
+ ]
110
+
111
+ # Concatenate the conversation strings
112
+ conversation_text = " ".join(conversation_history)
113
+
114
+ # Tokenize and pad the input
115
+ input_ids = tokenizer.encode(conversation_text, return_tensors="pt", padding=True, truncation=True)
116
+
117
+ # Generate a response
118
+ output_ids = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
119
+
120
+ # Decode the generated response
121
+ generated_response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
122
+
123
+ # Print the generated response
124
+ print("Generated Response:", generated_response)
125
+ ```
126
+
127
+ ## Experience the Magic ✨
128
+
129
+ - **Adaptive Learning:** Phillnet dynamically adapts to data patterns, continually enhancing its performance.
130
+ - **Innovative Growth:** The model evolves through an Innovative Growth Network, ensuring continuous enhancement.
131
+ - **Custom Architecture:** Crafted with a dynamic custom architecture for unparalleled language understanding.
132
+
133
+ ---