ayjays132 commited on
Commit
89f8def
β€’
1 Parent(s): bc7b550

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -10
README.md CHANGED
@@ -145,39 +145,66 @@ import torch
145
  from transformers import AutoTokenizer, AutoModelForCausalLM
146
  import logging
147
 
148
- # Initialize logging
149
  logging.basicConfig(level=logging.INFO)
150
  logger = logging.getLogger(__name__)
151
 
152
  def load_custom_model(model_name, device):
153
  try:
 
154
  model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
155
  logger.info(f"Model loaded successfully from {model_name}")
156
  return model
157
  except Exception as e:
158
- logger.error(f"Error loading the model: {e}")
159
  raise
160
 
161
  def load_tokenizer(tokenizer_name):
162
  try:
 
163
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
164
  logger.info(f"Tokenizer loaded successfully from {tokenizer_name}")
165
  return tokenizer
166
  except Exception as e:
167
- logger.error(f"Error loading the tokenizer: {e}")
168
  raise
169
 
 
 
 
 
 
170
  if __name__ == "__main__":
 
171
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
172
- model_name = "ayjays132/phillnet" # Your model's home in Hugging Face Hub
 
 
 
 
 
173
  try:
174
- tokenizer = load_tokenizer(model_name)
 
175
  model = load_custom_model(model_name, device)
176
- logger.info("Model and tokenizer are ready for action!")
 
 
 
 
 
 
 
 
 
 
 
177
  except Exception as e:
178
- logger.error(f"An unexpected twist occurred: {e}")
179
  ```
180
 
 
 
181
  ### πŸ›  How It Works: The Mechanics
182
 
183
  1. **Setting the Stage**: Our script begins by checking whether to summon the powers of CUDA or settle in the CPU realm.
@@ -192,7 +219,4 @@ This script isn't just a tool; it's a companion designed to make your AI endeavo
192
  - **Error Logs**: Detailed logging ensures you're always in the know, making troubleshooting a breeze.
193
  - **Flexibility**: Designed with customization in mind, feel free to tweak the script to fit the unique needs of your scholarly pursuits.
194
 
195
- ### 🌟 Final Words of Wisdom:
196
-
197
- With `CustomModelLoader.py` at your side, you're not just loading a model; you're unlocking a world of possibilities. Whether you're fine-tuning for accuracy or predicting the unknown, your AI journey is about to get a whole lot smoother. So, scholars and AI enthusiasts, let the odyssey begin! 🎩✨
198
  ---
 
145
  from transformers import AutoTokenizer, AutoModelForCausalLM
146
  import logging
147
 
148
+ # Set up logging
149
  logging.basicConfig(level=logging.INFO)
150
  logger = logging.getLogger(__name__)
151
 
152
  def load_custom_model(model_name, device):
153
  try:
154
+ # Load the model directly from Hugging Face Hub
155
  model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
156
  logger.info(f"Model loaded successfully from {model_name}")
157
  return model
158
  except Exception as e:
159
+ logger.error(f"An error occurred while loading the model: {e}")
160
  raise
161
 
162
  def load_tokenizer(tokenizer_name):
163
  try:
164
+ # Load the tokenizer
165
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
166
  logger.info(f"Tokenizer loaded successfully from {tokenizer_name}")
167
  return tokenizer
168
  except Exception as e:
169
+ logger.error(f"An error occurred while loading the tokenizer: {e}")
170
  raise
171
 
172
+ def inspect_model_layers(model):
173
+ logger.info("Inspecting model layers and weights...")
174
+ for name, param in model.named_parameters():
175
+ logger.debug(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]}...\n")
176
+
177
  if __name__ == "__main__":
178
+ # Define device
179
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
180
+ logger.info(f"Using {'CUDA' if device.type == 'cuda' else 'CPU'}")
181
+
182
+ # Model name or path in Hugging Face Hub
183
+ model_name = "ayjays132/phillnet"
184
+ tokenizer_name = model_name # Assuming tokenizer is at the same path
185
+
186
  try:
187
+ # Load the tokenizer and model
188
+ tokenizer = load_tokenizer(tokenizer_name)
189
  model = load_custom_model(model_name, device)
190
+
191
+ # Inspect the model layers and weights
192
+ inspect_model_layers(model)
193
+
194
+ # Perform a simple test to verify model weights are loaded correctly (Optional)
195
+ input_ids = tokenizer.encode("Hello, world!", return_tensors="pt").to(device)
196
+ with torch.no_grad():
197
+ outputs = model(input_ids)
198
+ logger.info("Model test run completed successfully.")
199
+
200
+ print("Custom model and tokenizer loaded successfully.")
201
+
202
  except Exception as e:
203
+ logger.error(f"An error occurred: {e}")
204
  ```
205
 
206
+ ### With `CustomModelLoader.py` at your side, you're not just loading a model; you're unlocking a world of possibilities. Whether you're fine-tuning for accuracy or predicting the unknown, your AI journey is about to get a whole lot smoother. So, scholars and AI enthusiasts, let the odyssey begin! 🎩✨
207
+
208
  ### πŸ›  How It Works: The Mechanics
209
 
210
  1. **Setting the Stage**: Our script begins by checking whether to summon the powers of CUDA or settle in the CPU realm.
 
219
  - **Error Logs**: Detailed logging ensures you're always in the know, making troubleshooting a breeze.
220
  - **Flexibility**: Designed with customization in mind, feel free to tweak the script to fit the unique needs of your scholarly pursuits.
221
 
 
 
 
222
  ---