--- model_type: DynamicNeuralNetwork architectures: - DynamicNeuralNetwork config: adaptation_rate: 0.05 architectures: - DynamicNeuralNetwork complexity_metric: null desired_improvement_rate: 0.02 ecosystem_dynamics: environmental_volatility: 0.1 resource_pool: 1 embedding_dim: 768 growth_improvement_threshold: 0.01 hidden_dim: 2048 initial_neuron_count: 5000 innovative_growth_net: adaptation_rate: 0.05 complexity_metric: null initial_capacity: 250000 input_size: 2048 input_dimension: 768 low_stability_threshold: 0.01 max_complexity: 10000 max_neurons: 250000 max_sequence_length: 200 min_epochs_before_growth: 5 model_filename: dynamic_network.pth model_type: llama num_embeddings: 25000 pruning_improvement_threshold: 0.005 some_adaptation_rate: 0.05 stability_threshold: 0.02 start_token_index: 2 transformers_version: 4.34.0 license: apache-2.0 datasets: - vicgalle/alpaca-gpt4 language: - en tags: - text-generation-inference metrics: - accuracy model: >- from transformers import DynamicNeuralNetwork, DynamicNeuralNetworkConfig custom_model = DynamicNeuralNetwork.from_pretrained("ayjays132/phillnet", config=DynamicNeuralNetworkConfig.from_pretrained("ayjays132/phillnet")) pipeline_tag: text-generation library_name: transformers --- # Model Card for Phillnet 🚀 ## Model Overview Phillnet, a marvel in the realm of language models, is a cutting-edge Dynamic Neural Network designed for advanced natural language processing tasks. Breaking away from conventional models, Phillnet exhibits dynamic adaptation and continuous evolution, showcasing its prowess in continual improvement. Crafted with a custom architecture, Phillnet seamlessly integrates an Innovative Growth Network, ushering in adaptability and innovation. ## Key Features - **Model Type:** Dynamic Neural Network 🧠 - **Embedding Dimension:** 768 - **Hidden Dimension:** 2048 - **Initial Neuron Count:** 5000 - **Input Dimension:** 768 - **Max Neurons:** 250000 - **Max Sequence Length:** 200 - **Num Embeddings:** 25000 - **Model Filename:** pytorch_model.bin - **Transformers Version:** 4.34.0 ## Ecosystem Dynamics 🌐 Phillnet thrives in a dynamic ecosystem: - **Environmental Volatility:** 0.1 - **Resource Pool:** 1.0 ## Innovative Growth Network 🌱 Empowered by an Innovative Growth Network for dynamic adaptation: - **Adaptation Rate:** 0.05 - **Initial Capacity:** 250000 - **Input Size:** 2048 ## Seamless Integration with Hugging Face 🤗 from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("ayjays132/phillnet") tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model = AutoModelForCausalLM.from_pretrained("ayjays132/phillnet") # Example conversation conversation_history = [ "Hello, how are you?", "I'm doing well, thank you! How about you?", "I'm good too. What's new with you?", "Not much, just working on some projects. How can I help you today?" ] # Concatenate the conversation strings conversation_text = " ".join(conversation_history) # Tokenize and pad the input input_ids = tokenizer.encode(conversation_text, return_tensors="pt", padding=True, truncation=True) # Generate a response output_ids = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id) # Decode the generated response generated_response = tokenizer.decode(output_ids[0], skip_special_tokens=True) # Print the generated response print("Generated Response:", generated_response) ``` ## Experience the Magic ✨ - **Adaptive Learning:** Phillnet dynamically adapts to data patterns, continually enhancing its performance. - **Innovative Growth:** The model evolves through an Innovative Growth Network, ensuring continuous enhancement. - **Custom Architecture:** Crafted with a dynamic custom architecture for unparalleled language understanding. ---