File size: 1,996 Bytes
721b0e8 7b042f6 5609183 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 721b0e8 7b042f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
base_model: google/mt5-small
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: mt5-base-ainu-kana
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-ainu-kana
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0804
- Chrf: 97.6659
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Chrf |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.3825 | 0.9999 | 4701 | 0.2094 | 93.1478 |
| 0.213 | 2.0 | 9403 | 0.1313 | 95.6819 |
| 0.1512 | 2.9999 | 14104 | 0.1083 | 96.3753 |
| 0.1164 | 4.0 | 18806 | 0.1005 | 96.6527 |
| 0.0979 | 4.9999 | 23507 | 0.0901 | 97.1337 |
| 0.0844 | 6.0 | 28209 | 0.0859 | 97.2226 |
| 0.0779 | 6.9999 | 32910 | 0.0807 | 97.4449 |
| 0.0574 | 8.0 | 37612 | 0.0817 | 97.5779 |
| 0.0544 | 8.9999 | 42313 | 0.0802 | 97.6210 |
| 0.0484 | 9.9989 | 47010 | 0.0804 | 97.6659 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.1.2
- Datasets 2.19.0
- Tokenizers 0.19.1
|