File size: 2,528 Bytes
5e42f7c
 
 
1a1b629
5e42f7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a1b629
5e42f7c
 
 
 
 
 
 
1a1b629
5e42f7c
1a1b629
 
5e42f7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a1b629
 
 
 
 
 
 
 
 
 
5e42f7c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---

library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emotion_classifier
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.4125
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# emotion_classifier



This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.

It achieves the following results on the evaluation set:

- Loss: 1.6092

- Accuracy: 0.4125



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 40   | 2.0750          | 0.15     |
| No log        | 2.0   | 80   | 2.0046          | 0.1875   |
| No log        | 3.0   | 120  | 1.8909          | 0.3063   |
| No log        | 4.0   | 160  | 1.7726          | 0.3563   |
| No log        | 5.0   | 200  | 1.6970          | 0.3438   |
| No log        | 6.0   | 240  | 1.6562          | 0.3937   |
| No log        | 7.0   | 280  | 1.6269          | 0.4062   |
| No log        | 8.0   | 320  | 1.6092          | 0.4125   |
| No log        | 9.0   | 360  | 1.6012          | 0.4125   |
| No log        | 10.0  | 400  | 1.5955          | 0.4125   |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.5.1+cpu
- Datasets 3.2.0
- Tokenizers 0.21.0