Update README.md
Browse files
README.md
CHANGED
@@ -31,19 +31,23 @@ The model is created by Dongxu Li, Junnan Li, Steven C.H. Hoi.
|
|
31 |
```python
|
32 |
from diffusers.pipelines import BlipDiffusionPipeline
|
33 |
from diffusers.utils import load_image
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
cond_subject = "dog"
|
40 |
tgt_subject = "dog"
|
41 |
text_prompt_input = "swimming underwater"
|
42 |
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
guidance_scale = 7.5
|
46 |
-
num_inference_steps =
|
47 |
negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"
|
48 |
|
49 |
output = blip_diffusion_pipe(
|
@@ -56,8 +60,8 @@ output = blip_diffusion_pipe(
|
|
56 |
neg_prompt=negative_prompt,
|
57 |
height=512,
|
58 |
width=512,
|
59 |
-
)
|
60 |
-
output[0]
|
61 |
```
|
62 |
Input Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/dog.jpg" style="width:500px;"/>
|
63 |
|
@@ -70,17 +74,22 @@ from diffusers.pipelines import BlipDiffusionControlNetPipeline
|
|
70 |
from diffusers.utils import load_image
|
71 |
from controlnet_aux import CannyDetector
|
72 |
|
73 |
-
blip_diffusion_pipe= BlipDiffusionControlNetPipeline.from_pretrained(
|
74 |
-
|
|
|
75 |
|
76 |
-
style_subject = "flower"
|
77 |
tgt_subject = "teapot" # subject to generate.
|
78 |
text_prompt = "on a marble table"
|
79 |
-
cldm_cond_image = load_image("https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/kettle.jpg").resize((512, 512))
|
80 |
-
canny = CannyDetector()
|
81 |
-
cldm_cond_image = canny(cldm_cond_image, 30, 70, output_type='pil')
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
guidance_scale = 7.5
|
86 |
num_inference_steps = 50
|
@@ -89,7 +98,7 @@ negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of f
|
|
89 |
output = blip_diffusion_pipe(
|
90 |
text_prompt,
|
91 |
style_image,
|
92 |
-
|
93 |
style_subject,
|
94 |
tgt_subject,
|
95 |
guidance_scale=guidance_scale,
|
@@ -97,8 +106,8 @@ output = blip_diffusion_pipe(
|
|
97 |
neg_prompt=negative_prompt,
|
98 |
height=512,
|
99 |
width=512,
|
100 |
-
|
101 |
-
output[0]
|
102 |
```
|
103 |
|
104 |
Input Style Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg" style="width:500px;"/>
|
@@ -111,19 +120,24 @@ from diffusers.pipelines import BlipDiffusionControlNetPipeline
|
|
111 |
from diffusers.utils import load_image
|
112 |
from controlnet_aux import HEDdetector
|
113 |
|
114 |
-
blip_diffusion_pipe= BlipDiffusionControlNetPipeline.from_pretrained(
|
|
|
|
|
115 |
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
|
116 |
blip_diffusion_pipe.controlnet = controlnet
|
117 |
-
blip_diffusion_pipe.to(
|
118 |
|
119 |
-
style_subject = "flower"
|
120 |
tgt_subject = "bag" # subject to generate.
|
121 |
text_prompt = "on a table"
|
122 |
-
cldm_cond_image = load_image(
|
|
|
|
|
123 |
hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
|
124 |
cldm_cond_image = hed(cldm_cond_image)
|
125 |
-
|
126 |
-
|
|
|
127 |
|
128 |
guidance_scale = 7.5
|
129 |
num_inference_steps = 50
|
@@ -132,7 +146,7 @@ negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of f
|
|
132 |
output = blip_diffusion_pipe(
|
133 |
text_prompt,
|
134 |
style_image,
|
135 |
-
|
136 |
style_subject,
|
137 |
tgt_subject,
|
138 |
guidance_scale=guidance_scale,
|
@@ -140,8 +154,8 @@ output = blip_diffusion_pipe(
|
|
140 |
neg_prompt=negative_prompt,
|
141 |
height=512,
|
142 |
width=512,
|
143 |
-
)
|
144 |
-
output[0]
|
145 |
```
|
146 |
|
147 |
Input Style Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg" style="width:500px;"/>
|
|
|
31 |
```python
|
32 |
from diffusers.pipelines import BlipDiffusionPipeline
|
33 |
from diffusers.utils import load_image
|
34 |
+
import torch
|
35 |
|
36 |
+
blip_diffusion_pipe = BlipDiffusionPipeline.from_pretrained(
|
37 |
+
"ayushtues/blipdiffusion", torch_dtype=torch.float16
|
38 |
+
).to("cuda")
|
39 |
|
40 |
cond_subject = "dog"
|
41 |
tgt_subject = "dog"
|
42 |
text_prompt_input = "swimming underwater"
|
43 |
|
44 |
+
cond_image = load_image(
|
45 |
+
"https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/dog.jpg"
|
46 |
+
)
|
47 |
|
48 |
+
iter_seed = 88888
|
49 |
guidance_scale = 7.5
|
50 |
+
num_inference_steps = 25
|
51 |
negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"
|
52 |
|
53 |
output = blip_diffusion_pipe(
|
|
|
60 |
neg_prompt=negative_prompt,
|
61 |
height=512,
|
62 |
width=512,
|
63 |
+
).images
|
64 |
+
output[0].save("image.png")
|
65 |
```
|
66 |
Input Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/dog.jpg" style="width:500px;"/>
|
67 |
|
|
|
74 |
from diffusers.utils import load_image
|
75 |
from controlnet_aux import CannyDetector
|
76 |
|
77 |
+
blip_diffusion_pipe = BlipDiffusionControlNetPipeline.from_pretrained(
|
78 |
+
"ayushtues/blipdiffusion-controlnet", torch_dtype=torch.float16
|
79 |
+
).to("cuda")
|
80 |
|
81 |
+
style_subject = "flower" # subject that defines the style
|
82 |
tgt_subject = "teapot" # subject to generate.
|
83 |
text_prompt = "on a marble table"
|
|
|
|
|
|
|
84 |
|
85 |
+
cldm_cond_image = load_image(
|
86 |
+
"https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/kettle.jpg"
|
87 |
+
).resize((512, 512))
|
88 |
+
canny = CannyDetector()
|
89 |
+
cldm_cond_image = canny(cldm_cond_image, 30, 70, output_type="pil")
|
90 |
+
style_image = load_image(
|
91 |
+
"https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg"
|
92 |
+
)
|
93 |
|
94 |
guidance_scale = 7.5
|
95 |
num_inference_steps = 50
|
|
|
98 |
output = blip_diffusion_pipe(
|
99 |
text_prompt,
|
100 |
style_image,
|
101 |
+
cldm_cond_image,
|
102 |
style_subject,
|
103 |
tgt_subject,
|
104 |
guidance_scale=guidance_scale,
|
|
|
106 |
neg_prompt=negative_prompt,
|
107 |
height=512,
|
108 |
width=512,
|
109 |
+
).images
|
110 |
+
output[0].save("image.png")
|
111 |
```
|
112 |
|
113 |
Input Style Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg" style="width:500px;"/>
|
|
|
120 |
from diffusers.utils import load_image
|
121 |
from controlnet_aux import HEDdetector
|
122 |
|
123 |
+
blip_diffusion_pipe = BlipDiffusionControlNetPipeline.from_pretrained(
|
124 |
+
"ayushtues/blipdiffusion-controlnet"
|
125 |
+
)
|
126 |
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
|
127 |
blip_diffusion_pipe.controlnet = controlnet
|
128 |
+
blip_diffusion_pipe.to("cuda")
|
129 |
|
130 |
+
style_subject = "flower" # subject that defines the style
|
131 |
tgt_subject = "bag" # subject to generate.
|
132 |
text_prompt = "on a table"
|
133 |
+
cldm_cond_image = load_image(
|
134 |
+
"https://huggingface.co/lllyasviel/sd-controlnet-scribble/resolve/main/images/bag.png"
|
135 |
+
).resize((512, 512))
|
136 |
hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
|
137 |
cldm_cond_image = hed(cldm_cond_image)
|
138 |
+
style_image = load_image(
|
139 |
+
"https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg"
|
140 |
+
)
|
141 |
|
142 |
guidance_scale = 7.5
|
143 |
num_inference_steps = 50
|
|
|
146 |
output = blip_diffusion_pipe(
|
147 |
text_prompt,
|
148 |
style_image,
|
149 |
+
cldm_cond_image,
|
150 |
style_subject,
|
151 |
tgt_subject,
|
152 |
guidance_scale=guidance_scale,
|
|
|
154 |
neg_prompt=negative_prompt,
|
155 |
height=512,
|
156 |
width=512,
|
157 |
+
).images
|
158 |
+
output[0].save("image.png")
|
159 |
```
|
160 |
|
161 |
Input Style Image : <img src="https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg" style="width:500px;"/>
|