azimuth3d commited on
Commit
dd57a86
·
1 Parent(s): 5807d82

Save trained Lunar Lander v2

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 208.70 +/- 73.75
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb5f1650440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5f16504d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb5f1650560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5f16505f0>", "_build": "<function ActorCriticPolicy._build at 0x7fb5f1650680>", "forward": "<function ActorCriticPolicy.forward at 0x7fb5f1650710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb5f16507a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb5f1650830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb5f16508c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb5f1650950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb5f16509e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb5f1698b40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659189769.0020065, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaJd72up/a4OIveul7S37Xn21A7gYsCOgAAgD8AAIA/mqlKPY8aL7pIfYA6FN0CNs2lMDsWk5W5AACAPwAAgD8NqL89w9Usut+OJbuGXNE2GaEVO0tQO7YAAIA/AACAPxp8HL3hzpe6shKtO3UWGDk3+hi7+uxPugAAgD8AAIA/TUnLPRRElrqDEYW7oV8BN9EOwrqDwWS2AACAPwAAgD8MhgW/0kwdvvfsPzqy/sQ4tS4+PpDEq7kAAIA/AACAP43TyD0UiKy6ApOVOjespLUhocW5EWyruQAAgD8AAIA/ZvulvOzJy7mhPJE7h3VnOGZbVDteqYG4AACAPwAAgD+Nf8M9XPslusaPI7uR4QA4G8N4OWX4vjkAAIA/AACAP0taiL7x3HI85YKLOxY6p7m/n/29QKZLugAAgD8AAAAAphrlPVTX+j6IPGC+es+8vhFOADz9K06+AAAAAAAAAADN3Rq9jw4vungQwjocHOc3wJfhOnn8RbgAAIA/AACAP8YWlj7x1hm9TXoIPIInWLphs4W+Zc0fuwAAgD8AAIA/CQ0wv0+DQr7E2Qc8bNu/uC2THb2W+t03AAAAAAAAgD9aJtm9zuzFPfKb9z1qlg6+5bqpPdfSND0AAAAAAAAAAK1ECz6kKTa7TR+Qu95zWTleI2u8e+uTOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw4Nm171lX0CUhpRSlIwBbJRN6AOMAXSUR0B5G82uPmxMdX2UKGgGaAloD0MIEw69xcP9WkCUhpRSlGgVTegDaBZHQHku8jFAE+x1fZQoaAZoCWgPQwimY84z9qFbQJSGlFKUaBVN6ANoFkdAeTaGQSzw+nV9lChoBmgJaA9DCPHUIw1ulzRAlIaUUpRoFUvLaBZHQHmPpoXbdrR1fZQoaAZoCWgPQwiXyXA8n61cQJSGlFKUaBVN6ANoFkdAeY/fOUt7KXV9lChoBmgJaA9DCOId4EkLD2BAlIaUUpRoFU3oA2gWR0B5qAqc3EQ5dX2UKGgGaAloD0MIs874vriURUCUhpRSlGgVS6toFkdAebUJPqLS/nV9lChoBmgJaA9DCP7XuWkz3htAlIaUUpRoFUu2aBZHQHm314HHFP11fZQoaAZoCWgPQwgiVKnZA5xgQJSGlFKUaBVN6ANoFkdAecCOGCZnc3V9lChoBmgJaA9DCI+mejL//FZAlIaUUpRoFU3oA2gWR0B5w8hEBsAOdX2UKGgGaAloD0MIG2g+524gX0CUhpRSlGgVTegDaBZHQHnLwKKHfuV1fZQoaAZoCWgPQwiDh2nf3FFHQJSGlFKUaBVLomgWR0B5zGlSCOFQdX2UKGgGaAloD0MI6uv5muWuW0CUhpRSlGgVTegDaBZHQHnS0rwvxpd1fZQoaAZoCWgPQwgIsMivn7NkQJSGlFKUaBVN6ANoFkdAedS1Aqur63V9lChoBmgJaA9DCOGZ0CSxAVxAlIaUUpRoFU3oA2gWR0B53B9Wp6yCdX2UKGgGaAloD0MIMPXzpiJJM0CUhpRSlGgVS7doFkdAed7SE12q1nV9lChoBmgJaA9DCCiCOA+n4GRAlIaUUpRoFU3oA2gWR0B54pgE2YOUdX2UKGgGaAloD0MI0/TZAdetQECUhpRSlGgVS51oFkdAeeOgCwKSgXV9lChoBmgJaA9DCJ6Xio15C2FAlIaUUpRoFU3oA2gWR0B55c5WBBiTdX2UKGgGaAloD0MI0SSxpNwFYECUhpRSlGgVTegDaBZHQHnmIkzGgjB1fZQoaAZoCWgPQwjxK9ZwkdMkwJSGlFKUaBVLn2gWR0B56e72+PBBdX2UKGgGaAloD0MIeT9uv3y6QECUhpRSlGgVS7doFkdAefO2+wkgOnV9lChoBmgJaA9DCMCvkSQIvzzAlIaUUpRoFUvDaBZHQHn+ijtXxON1fZQoaAZoCWgPQwi7C5QUWJAXwJSGlFKUaBVLqmgWR0B5/r8aXKKYdX2UKGgGaAloD0MI3QiLijglLkCUhpRSlGgVS6RoFkdAegBUFjd56nV9lChoBmgJaA9DCIDwoUTLvmZAlIaUUpRoFU3oA2gWR0B6OJ7Uoa1kdX2UKGgGaAloD0MIGcdI9gg+W0CUhpRSlGgVTegDaBZHQHo7dehPCVN1fZQoaAZoCWgPQwgVN24xP5RhQJSGlFKUaBVN6ANoFkdAek7wKBun/HV9lChoBmgJaA9DCDOl9bcERV9AlIaUUpRoFU3oA2gWR0B6VwIjW07bdX2UKGgGaAloD0MIV7CNeDKgYECUhpRSlGgVTegDaBZHQHrfmAXl8w51fZQoaAZoCWgPQwithVlo5+1fQJSGlFKUaBVN6ANoFkdAeu41WbPQfXV9lChoBmgJaA9DCGuBPSZSsVtAlIaUUpRoFU3oA2gWR0B6/AarFOwgdX2UKGgGaAloD0MI0QK0rWYgUkCUhpRSlGgVTegDaBZHQHsE0fozN2V1fZQoaAZoCWgPQwgPKJtyhXJdQJSGlFKUaBVN6ANoFkdAew/B4D9wWHV9lChoBmgJaA9DCKvLKQExyStAlIaUUpRoFUvBaBZHQHsSrvkRzzV1fZQoaAZoCWgPQwjIeJRK+LZgQJSGlFKUaBVN6ANoFkdAexfuqm0mdHV9lChoBmgJaA9DCMoWSbvRpUlAlIaUUpRoFUuraBZHQHsZUdmxt551fZQoaAZoCWgPQwi7Qh8sY/BaQJSGlFKUaBVN6ANoFkdAexxADq4YrXV9lChoBmgJaA9DCOtvCcA/YF1AlIaUUpRoFU3oA2gWR0B7ImvKU3XJdX2UKGgGaAloD0MIilkvhnKi6r+UhpRSlGgVS8VoFkdAeylgqVhTfnV9lChoBmgJaA9DCEnVdhN88l1AlIaUUpRoFU3oA2gWR0B7L2I/JNj9dX2UKGgGaAloD0MI5US7CqlqZkCUhpRSlGgVTegDaBZHQHs7b4i5d4V1fZQoaAZoCWgPQwjVk/lH31REQJSGlFKUaBVN6ANoFkdAezuvexfOU3V9lChoBmgJaA9DCDfDDfj8F11AlIaUUpRoFU3oA2gWR0B7PTAoG6f8dX2UKGgGaAloD0MInfLoRlgJXkCUhpRSlGgVTegDaBZHQHtwysXBP9F1fZQoaAZoCWgPQwgTfT7KiIFhQJSGlFKUaBVN6ANoFkdAe3OU3n6l+HV9lChoBmgJaA9DCIbJVMEoA2VAlIaUUpRoFU3oA2gWR0B7hexLTQVsdX2UKGgGaAloD0MIk25L5IKzYECUhpRSlGgVTegDaBZHQHuNOy7f51x1fZQoaAZoCWgPQwhCsKpe/ndiQJSGlFKUaBVN6ANoFkdAfDTf2bobGXV9lChoBmgJaA9DCEgZcQFoKGtAlIaUUpRoFU2FAWgWR0B8PCasp5NXdX2UKGgGaAloD0MIUg/R6A6yUECUhpRSlGgVTegDaBZHQHxAhywOe8R1fZQoaAZoCWgPQwjqdYvAWIRgQJSGlFKUaBVN6ANoFkdAfENkkrwvx3V9lChoBmgJaA9DCLLZkeo7hU1AlIaUUpRoFU3oA2gWR0B8SDZSNwR5dX2UKGgGaAloD0MIzas6q4WFY0CUhpRSlGgVTegDaBZHQHxJanm7rcF1fZQoaAZoCWgPQwgc6ndha6xgQJSGlFKUaBVN6ANoFkdAfEvV9nbqQnV9lChoBmgJaA9DCMNEgxS85GNAlIaUUpRoFU3oA2gWR0B8UML1EmY0dX2UKGgGaAloD0MIhcyVQbXZYUCUhpRSlGgVTegDaBZHQHxWrRrrPdF1fZQoaAZoCWgPQwg+esN95ORhQJSGlFKUaBVN6ANoFkdAfFtMbWEsa3V9lChoBmgJaA9DCE34pX7enEpAlIaUUpRoFUu6aBZHQHxh4p6QeV91fZQoaAZoCWgPQwgkRWRYxS5VQJSGlFKUaBVN6ANoFkdAfGYeQdS2pnV9lChoBmgJaA9DCInTSbY6RGJAlIaUUpRoFU3oA2gWR0B8ZlXV9Wp7dX2UKGgGaAloD0MIGoaPiCmnXUCUhpRSlGgVTegDaBZHQHxnvyXlbNd1fZQoaAZoCWgPQwijsIuiBz4UwJSGlFKUaBVLsWgWR0B8iIuQIUrTdX2UKGgGaAloD0MI+u5Wlmh1ZECUhpRSlGgVTegDaBZHQHyZ4qTbFjx1fZQoaAZoCWgPQwiUEoJV9S1hQJSGlFKUaBVN6ANoFkdAfJxwBYFJQXV9lChoBmgJaA9DCNEksaRcgGRAlIaUUpRoFU3oA2gWR0B8rnKhcqvvdX2UKGgGaAloD0MI/u2yX3daIkCUhpRSlGgVS5ZoFkdAfL+EZiuuBHV9lChoBmgJaA9DCM0gPrDjCmFAlIaUUpRoFU3oA2gWR0B9YHNnoPkJdX2UKGgGaAloD0MItYr+0EytYUCUhpRSlGgVTegDaBZHQH1oN9+gDih1fZQoaAZoCWgPQwjo3O166aFjQJSGlFKUaBVN6ANoFkdAfW/FHJ9y93V9lChoBmgJaA9DCD+toj80Ql9AlIaUUpRoFU3oA2gWR0B9dQdwNsnBdX2UKGgGaAloD0MIXVFKCFYlYkCUhpRSlGgVTegDaBZHQH12TT4L1Ep1fZQoaAZoCWgPQwheSfJc38pjQJSGlFKUaBVN6ANoFkdAfXkSL61stXV9lChoBmgJaA9DCIcUAyQaXGZAlIaUUpRoFU3oA2gWR0B9frnjhky2dX2UKGgGaAloD0MIUFCKVu4CYUCUhpRSlGgVTegDaBZHQH2E2s3hn8N1fZQoaAZoCWgPQwjwUBTok2JhQJSGlFKUaBVN6ANoFkdAfYn+RYA80XV9lChoBmgJaA9DCOc24V6ZUzZAlIaUUpRoFUvUaBZHQH2NK4lQdjp1fZQoaAZoCWgPQwhck25L5GxfQJSGlFKUaBVN6ANoFkdAfZBaiKziTHV9lChoBmgJaA9DCH/Bbtg23WNAlIaUUpRoFU3oA2gWR0B9lAZgogFHdX2UKGgGaAloD0MIysFsAgzBY0CUhpRSlGgVTegDaBZHQH2UOqWC2+h1fZQoaAZoCWgPQwhL58OzhG9gQJSGlFKUaBVN6ANoFkdAfbaL61stTXV9lChoBmgJaA9DCMxAZfz7b11AlIaUUpRoFU3oA2gWR0B9x9foicG1dX2UKGgGaAloD0MIf2jmybVNZkCUhpRSlGgVTegDaBZHQH3dKLbYbsF1fZQoaAZoCWgPQwgtJjYf14JhQJSGlFKUaBVN6ANoFkdAfe3aaTfR/nV9lChoBmgJaA9DCDRmEvUCI2BAlIaUUpRoFU3oA2gWR0B+nZjNIK+jdX2UKGgGaAloD0MILC6Oyk3YRECUhpRSlGgVTegDaBZHQH6l5Jf6XSl1fZQoaAZoCWgPQwjezOhHw4lZQJSGlFKUaBVN6ANoFkdAfqvHcUM5O3V9lChoBmgJaA9DCKLw2To4i2BAlIaUUpRoFU3oA2gWR0B+rVOTJQtSdX2UKGgGaAloD0MIF7oSgequY0CUhpRSlGgVTegDaBZHQH6wR4t6HCZ1fZQoaAZoCWgPQwgcB14t99RhQJSGlFKUaBVN6ANoFkdAfrYIwdsBQ3V9lChoBmgJaA9DCBGQL6GCEGNAlIaUUpRoFU3oA2gWR0B+vFmQKa5PdX2UKGgGaAloD0MI22lrRDAsYUCUhpRSlGgVTegDaBZHQH7BieAd4ml1fZQoaAZoCWgPQwjohTsXRphfQJSGlFKUaBVN6ANoFkdAfsTlUp/gBXV9lChoBmgJaA9DCEWg+geR4V1AlIaUUpRoFU3oA2gWR0B+yDTx5LRKdX2UKGgGaAloD0MIn48y4oI3ZECUhpRSlGgVTegDaBZHQH7LsoH9m6J1fZQoaAZoCWgPQwjcSUT4F4pfQJSGlFKUaBVN6ANoFkdAfsvhTfixV3V9lChoBmgJaA9DCHqmlxjLGGVAlIaUUpRoFU3oA2gWR0B+7BzCDVYqdX2UKGgGaAloD0MILLZJRWNJZkCUhpRSlGgVTegDaBZHQH779YfW+XZ1fZQoaAZoCWgPQwisOqsF9tpiQJSGlFKUaBVN6ANoFkdAfxFgUDdP+HV9lChoBmgJaA9DCEGDTZ3HW2ZAlIaUUpRoFU3oA2gWR0B/Ip4iX6ZZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:931d18cf9c30fdaece8dafd6331fcbb0376fc44c5785be18bc6c7002f334c3d3
3
+ size 147120
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb5f1650440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5f16504d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb5f1650560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5f16505f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb5f1650680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb5f1650710>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb5f16507a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb5f1650830>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb5f16508c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb5f1650950>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb5f16509e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb5f1698b40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1659189769.0020065,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaJd72up/a4OIveul7S37Xn21A7gYsCOgAAgD8AAIA/mqlKPY8aL7pIfYA6FN0CNs2lMDsWk5W5AACAPwAAgD8NqL89w9Usut+OJbuGXNE2GaEVO0tQO7YAAIA/AACAPxp8HL3hzpe6shKtO3UWGDk3+hi7+uxPugAAgD8AAIA/TUnLPRRElrqDEYW7oV8BN9EOwrqDwWS2AACAPwAAgD8MhgW/0kwdvvfsPzqy/sQ4tS4+PpDEq7kAAIA/AACAP43TyD0UiKy6ApOVOjespLUhocW5EWyruQAAgD8AAIA/ZvulvOzJy7mhPJE7h3VnOGZbVDteqYG4AACAPwAAgD+Nf8M9XPslusaPI7uR4QA4G8N4OWX4vjkAAIA/AACAP0taiL7x3HI85YKLOxY6p7m/n/29QKZLugAAgD8AAAAAphrlPVTX+j6IPGC+es+8vhFOADz9K06+AAAAAAAAAADN3Rq9jw4vungQwjocHOc3wJfhOnn8RbgAAIA/AACAP8YWlj7x1hm9TXoIPIInWLphs4W+Zc0fuwAAgD8AAIA/CQ0wv0+DQr7E2Qc8bNu/uC2THb2W+t03AAAAAAAAgD9aJtm9zuzFPfKb9z1qlg6+5bqpPdfSND0AAAAAAAAAAK1ECz6kKTa7TR+Qu95zWTleI2u8e+uTOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw4Nm171lX0CUhpRSlIwBbJRN6AOMAXSUR0B5G82uPmxMdX2UKGgGaAloD0MIEw69xcP9WkCUhpRSlGgVTegDaBZHQHku8jFAE+x1fZQoaAZoCWgPQwimY84z9qFbQJSGlFKUaBVN6ANoFkdAeTaGQSzw+nV9lChoBmgJaA9DCPHUIw1ulzRAlIaUUpRoFUvLaBZHQHmPpoXbdrR1fZQoaAZoCWgPQwiXyXA8n61cQJSGlFKUaBVN6ANoFkdAeY/fOUt7KXV9lChoBmgJaA9DCOId4EkLD2BAlIaUUpRoFU3oA2gWR0B5qAqc3EQ5dX2UKGgGaAloD0MIs874vriURUCUhpRSlGgVS6toFkdAebUJPqLS/nV9lChoBmgJaA9DCP7XuWkz3htAlIaUUpRoFUu2aBZHQHm314HHFP11fZQoaAZoCWgPQwgiVKnZA5xgQJSGlFKUaBVN6ANoFkdAecCOGCZnc3V9lChoBmgJaA9DCI+mejL//FZAlIaUUpRoFU3oA2gWR0B5w8hEBsAOdX2UKGgGaAloD0MIG2g+524gX0CUhpRSlGgVTegDaBZHQHnLwKKHfuV1fZQoaAZoCWgPQwiDh2nf3FFHQJSGlFKUaBVLomgWR0B5zGlSCOFQdX2UKGgGaAloD0MI6uv5muWuW0CUhpRSlGgVTegDaBZHQHnS0rwvxpd1fZQoaAZoCWgPQwgIsMivn7NkQJSGlFKUaBVN6ANoFkdAedS1Aqur63V9lChoBmgJaA9DCOGZ0CSxAVxAlIaUUpRoFU3oA2gWR0B53B9Wp6yCdX2UKGgGaAloD0MIMPXzpiJJM0CUhpRSlGgVS7doFkdAed7SE12q1nV9lChoBmgJaA9DCCiCOA+n4GRAlIaUUpRoFU3oA2gWR0B54pgE2YOUdX2UKGgGaAloD0MI0/TZAdetQECUhpRSlGgVS51oFkdAeeOgCwKSgXV9lChoBmgJaA9DCJ6Xio15C2FAlIaUUpRoFU3oA2gWR0B55c5WBBiTdX2UKGgGaAloD0MI0SSxpNwFYECUhpRSlGgVTegDaBZHQHnmIkzGgjB1fZQoaAZoCWgPQwjxK9ZwkdMkwJSGlFKUaBVLn2gWR0B56e72+PBBdX2UKGgGaAloD0MIeT9uv3y6QECUhpRSlGgVS7doFkdAefO2+wkgOnV9lChoBmgJaA9DCMCvkSQIvzzAlIaUUpRoFUvDaBZHQHn+ijtXxON1fZQoaAZoCWgPQwi7C5QUWJAXwJSGlFKUaBVLqmgWR0B5/r8aXKKYdX2UKGgGaAloD0MI3QiLijglLkCUhpRSlGgVS6RoFkdAegBUFjd56nV9lChoBmgJaA9DCIDwoUTLvmZAlIaUUpRoFU3oA2gWR0B6OJ7Uoa1kdX2UKGgGaAloD0MIGcdI9gg+W0CUhpRSlGgVTegDaBZHQHo7dehPCVN1fZQoaAZoCWgPQwgVN24xP5RhQJSGlFKUaBVN6ANoFkdAek7wKBun/HV9lChoBmgJaA9DCDOl9bcERV9AlIaUUpRoFU3oA2gWR0B6VwIjW07bdX2UKGgGaAloD0MIV7CNeDKgYECUhpRSlGgVTegDaBZHQHrfmAXl8w51fZQoaAZoCWgPQwithVlo5+1fQJSGlFKUaBVN6ANoFkdAeu41WbPQfXV9lChoBmgJaA9DCGuBPSZSsVtAlIaUUpRoFU3oA2gWR0B6/AarFOwgdX2UKGgGaAloD0MI0QK0rWYgUkCUhpRSlGgVTegDaBZHQHsE0fozN2V1fZQoaAZoCWgPQwgPKJtyhXJdQJSGlFKUaBVN6ANoFkdAew/B4D9wWHV9lChoBmgJaA9DCKvLKQExyStAlIaUUpRoFUvBaBZHQHsSrvkRzzV1fZQoaAZoCWgPQwjIeJRK+LZgQJSGlFKUaBVN6ANoFkdAexfuqm0mdHV9lChoBmgJaA9DCMoWSbvRpUlAlIaUUpRoFUuraBZHQHsZUdmxt551fZQoaAZoCWgPQwi7Qh8sY/BaQJSGlFKUaBVN6ANoFkdAexxADq4YrXV9lChoBmgJaA9DCOtvCcA/YF1AlIaUUpRoFU3oA2gWR0B7ImvKU3XJdX2UKGgGaAloD0MIilkvhnKi6r+UhpRSlGgVS8VoFkdAeylgqVhTfnV9lChoBmgJaA9DCEnVdhN88l1AlIaUUpRoFU3oA2gWR0B7L2I/JNj9dX2UKGgGaAloD0MI5US7CqlqZkCUhpRSlGgVTegDaBZHQHs7b4i5d4V1fZQoaAZoCWgPQwjVk/lH31REQJSGlFKUaBVN6ANoFkdAezuvexfOU3V9lChoBmgJaA9DCDfDDfj8F11AlIaUUpRoFU3oA2gWR0B7PTAoG6f8dX2UKGgGaAloD0MInfLoRlgJXkCUhpRSlGgVTegDaBZHQHtwysXBP9F1fZQoaAZoCWgPQwgTfT7KiIFhQJSGlFKUaBVN6ANoFkdAe3OU3n6l+HV9lChoBmgJaA9DCIbJVMEoA2VAlIaUUpRoFU3oA2gWR0B7hexLTQVsdX2UKGgGaAloD0MIk25L5IKzYECUhpRSlGgVTegDaBZHQHuNOy7f51x1fZQoaAZoCWgPQwhCsKpe/ndiQJSGlFKUaBVN6ANoFkdAfDTf2bobGXV9lChoBmgJaA9DCEgZcQFoKGtAlIaUUpRoFU2FAWgWR0B8PCasp5NXdX2UKGgGaAloD0MIUg/R6A6yUECUhpRSlGgVTegDaBZHQHxAhywOe8R1fZQoaAZoCWgPQwjqdYvAWIRgQJSGlFKUaBVN6ANoFkdAfENkkrwvx3V9lChoBmgJaA9DCLLZkeo7hU1AlIaUUpRoFU3oA2gWR0B8SDZSNwR5dX2UKGgGaAloD0MIzas6q4WFY0CUhpRSlGgVTegDaBZHQHxJanm7rcF1fZQoaAZoCWgPQwgc6ndha6xgQJSGlFKUaBVN6ANoFkdAfEvV9nbqQnV9lChoBmgJaA9DCMNEgxS85GNAlIaUUpRoFU3oA2gWR0B8UML1EmY0dX2UKGgGaAloD0MIhcyVQbXZYUCUhpRSlGgVTegDaBZHQHxWrRrrPdF1fZQoaAZoCWgPQwg+esN95ORhQJSGlFKUaBVN6ANoFkdAfFtMbWEsa3V9lChoBmgJaA9DCE34pX7enEpAlIaUUpRoFUu6aBZHQHxh4p6QeV91fZQoaAZoCWgPQwgkRWRYxS5VQJSGlFKUaBVN6ANoFkdAfGYeQdS2pnV9lChoBmgJaA9DCInTSbY6RGJAlIaUUpRoFU3oA2gWR0B8ZlXV9Wp7dX2UKGgGaAloD0MIGoaPiCmnXUCUhpRSlGgVTegDaBZHQHxnvyXlbNd1fZQoaAZoCWgPQwijsIuiBz4UwJSGlFKUaBVLsWgWR0B8iIuQIUrTdX2UKGgGaAloD0MI+u5Wlmh1ZECUhpRSlGgVTegDaBZHQHyZ4qTbFjx1fZQoaAZoCWgPQwiUEoJV9S1hQJSGlFKUaBVN6ANoFkdAfJxwBYFJQXV9lChoBmgJaA9DCNEksaRcgGRAlIaUUpRoFU3oA2gWR0B8rnKhcqvvdX2UKGgGaAloD0MI/u2yX3daIkCUhpRSlGgVS5ZoFkdAfL+EZiuuBHV9lChoBmgJaA9DCM0gPrDjCmFAlIaUUpRoFU3oA2gWR0B9YHNnoPkJdX2UKGgGaAloD0MItYr+0EytYUCUhpRSlGgVTegDaBZHQH1oN9+gDih1fZQoaAZoCWgPQwjo3O166aFjQJSGlFKUaBVN6ANoFkdAfW/FHJ9y93V9lChoBmgJaA9DCD+toj80Ql9AlIaUUpRoFU3oA2gWR0B9dQdwNsnBdX2UKGgGaAloD0MIXVFKCFYlYkCUhpRSlGgVTegDaBZHQH12TT4L1Ep1fZQoaAZoCWgPQwheSfJc38pjQJSGlFKUaBVN6ANoFkdAfXkSL61stXV9lChoBmgJaA9DCIcUAyQaXGZAlIaUUpRoFU3oA2gWR0B9frnjhky2dX2UKGgGaAloD0MIUFCKVu4CYUCUhpRSlGgVTegDaBZHQH2E2s3hn8N1fZQoaAZoCWgPQwjwUBTok2JhQJSGlFKUaBVN6ANoFkdAfYn+RYA80XV9lChoBmgJaA9DCOc24V6ZUzZAlIaUUpRoFUvUaBZHQH2NK4lQdjp1fZQoaAZoCWgPQwhck25L5GxfQJSGlFKUaBVN6ANoFkdAfZBaiKziTHV9lChoBmgJaA9DCH/Bbtg23WNAlIaUUpRoFU3oA2gWR0B9lAZgogFHdX2UKGgGaAloD0MIysFsAgzBY0CUhpRSlGgVTegDaBZHQH2UOqWC2+h1fZQoaAZoCWgPQwhL58OzhG9gQJSGlFKUaBVN6ANoFkdAfbaL61stTXV9lChoBmgJaA9DCMxAZfz7b11AlIaUUpRoFU3oA2gWR0B9x9foicG1dX2UKGgGaAloD0MIf2jmybVNZkCUhpRSlGgVTegDaBZHQH3dKLbYbsF1fZQoaAZoCWgPQwgtJjYf14JhQJSGlFKUaBVN6ANoFkdAfe3aaTfR/nV9lChoBmgJaA9DCDRmEvUCI2BAlIaUUpRoFU3oA2gWR0B+nZjNIK+jdX2UKGgGaAloD0MILC6Oyk3YRECUhpRSlGgVTegDaBZHQH6l5Jf6XSl1fZQoaAZoCWgPQwjezOhHw4lZQJSGlFKUaBVN6ANoFkdAfqvHcUM5O3V9lChoBmgJaA9DCKLw2To4i2BAlIaUUpRoFU3oA2gWR0B+rVOTJQtSdX2UKGgGaAloD0MIF7oSgequY0CUhpRSlGgVTegDaBZHQH6wR4t6HCZ1fZQoaAZoCWgPQwgcB14t99RhQJSGlFKUaBVN6ANoFkdAfrYIwdsBQ3V9lChoBmgJaA9DCBGQL6GCEGNAlIaUUpRoFU3oA2gWR0B+vFmQKa5PdX2UKGgGaAloD0MI22lrRDAsYUCUhpRSlGgVTegDaBZHQH7BieAd4ml1fZQoaAZoCWgPQwjohTsXRphfQJSGlFKUaBVN6ANoFkdAfsTlUp/gBXV9lChoBmgJaA9DCEWg+geR4V1AlIaUUpRoFU3oA2gWR0B+yDTx5LRKdX2UKGgGaAloD0MIn48y4oI3ZECUhpRSlGgVTegDaBZHQH7LsoH9m6J1fZQoaAZoCWgPQwjcSUT4F4pfQJSGlFKUaBVN6ANoFkdAfsvhTfixV3V9lChoBmgJaA9DCHqmlxjLGGVAlIaUUpRoFU3oA2gWR0B+7BzCDVYqdX2UKGgGaAloD0MILLZJRWNJZkCUhpRSlGgVTegDaBZHQH779YfW+XZ1fZQoaAZoCWgPQwisOqsF9tpiQJSGlFKUaBVN6ANoFkdAfxFgUDdP+HV9lChoBmgJaA9DCEGDTZ3HW2ZAlIaUUpRoFU3oA2gWR0B/Ip4iX6ZZdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23d34ce7b3fe51a8c314c63b8f9269ff0588aa730c8209ff9de9f26ce252a4af
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bca6f3de64379e7ed81a90599475008d87232cea43fe62c650493bf2744d6d6
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (237 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 208.69964453566968, "std_reward": 73.74525455814265, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-30T14:48:43.237915"}